Mathematical aspects of fullerenes
Ars Mathematica Contemporanea, Tome 11 (2016) no. 2, pp. 353-379.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Fullerene graphs are cubic, 3-connected, planar graphs with exactly 12 pentagonal faces, while all other faces are hexagons. Fullerene graphs are mathematical models of fullerene molecules, i.e., molecules comprised only by carbon atoms different than graphites and diamonds. We give a survey on fullerene graphs from our perspective, which could be also considered as an introduction to this topic. Different types of fullerene graphs are considered, their symmetries, and construction methods. We give an overview of some graph invariants that can possibly correlate with the fullerene molecule stability, such as: the bipartite edge frustration, the independence number, the saturation number, the number of perfect matchings, etc.
DOI : 10.26493/1855-3974.834.b02
Keywords: Fullerene, cubic graph, planar graph, topological indices
@article{10_26493_1855_3974_834_b02,
     author = {Vesna Andova and Franti\v{s}ek Kardo\v{s} and Riste \v{S}krekovski},
     title = {Mathematical aspects of fullerenes},
     journal = {Ars Mathematica Contemporanea},
     pages = {353--379},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     doi = {10.26493/1855-3974.834.b02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.834.b02/}
}
TY  - JOUR
AU  - Vesna Andova
AU  - František Kardoš
AU  - Riste Škrekovski
TI  - Mathematical aspects of fullerenes
JO  - Ars Mathematica Contemporanea
PY  - 2016
SP  - 353
EP  - 379
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.834.b02/
DO  - 10.26493/1855-3974.834.b02
LA  - en
ID  - 10_26493_1855_3974_834_b02
ER  - 
%0 Journal Article
%A Vesna Andova
%A František Kardoš
%A Riste Škrekovski
%T Mathematical aspects of fullerenes
%J Ars Mathematica Contemporanea
%D 2016
%P 353-379
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.834.b02/
%R 10.26493/1855-3974.834.b02
%G en
%F 10_26493_1855_3974_834_b02
Vesna Andova; František Kardoš; Riste Škrekovski. Mathematical aspects of fullerenes. Ars Mathematica Contemporanea, Tome 11 (2016) no. 2, pp. 353-379. doi : 10.26493/1855-3974.834.b02. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.834.b02/

Cité par Sources :