Axiomatic characterization of transit functions of hierarchies
Ars Mathematica Contemporanea, Tome 14 (2018) no. 1, pp. 117-128.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Transit functions provide a unifying approach to many results on intervals, convexities, and betweenness. Here we show that hierarchical structures arising in cluster analysis and phylogenetics have a natural characterization in terms of transit functions and that hierarchies are identified by multiple combinations of independent axioms.
DOI : 10.26493/1855-3974.831.e12
Keywords: Transit functions, convexities, hierarchies, rooted trees, axiom systems
@article{10_26493_1855_3974_831_e12,
     author = {Manoj Changat and Ferdoos Hossein Nezhad and Peter F. Stadler},
     title = {Axiomatic characterization of transit functions of hierarchies},
     journal = {Ars Mathematica Contemporanea},
     pages = {117--128},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2018},
     doi = {10.26493/1855-3974.831.e12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.831.e12/}
}
TY  - JOUR
AU  - Manoj Changat
AU  - Ferdoos Hossein Nezhad
AU  - Peter F. Stadler
TI  - Axiomatic characterization of transit functions of hierarchies
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 117
EP  - 128
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.831.e12/
DO  - 10.26493/1855-3974.831.e12
LA  - en
ID  - 10_26493_1855_3974_831_e12
ER  - 
%0 Journal Article
%A Manoj Changat
%A Ferdoos Hossein Nezhad
%A Peter F. Stadler
%T Axiomatic characterization of transit functions of hierarchies
%J Ars Mathematica Contemporanea
%D 2018
%P 117-128
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.831.e12/
%R 10.26493/1855-3974.831.e12
%G en
%F 10_26493_1855_3974_831_e12
Manoj Changat; Ferdoos Hossein Nezhad; Peter F. Stadler. Axiomatic characterization of transit functions of hierarchies. Ars Mathematica Contemporanea, Tome 14 (2018) no. 1, pp. 117-128. doi : 10.26493/1855-3974.831.e12. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.831.e12/

Cité par Sources :