Remarks on the thickness of K_n,n,n
Ars Mathematica Contemporanea, Tome 12 (2017) no. 1, pp. 135-144.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The thickness θ(G) of a graph G is the minimum number of planar subgraphs into which G can be decomposed. In this paper, we provide a new upper bound for the thickness of the complete tripartite graphs Kn, n, n (n ≥ 3) and obtain θ(Kn, n, n) = ⌈(n + 1) / 3⌉, when n ≡ 3 (mod 6).
DOI : 10.26493/1855-3974.823.068
Keywords: Thickness, complete tripartite graph, planar subgraphs decomposition
@article{10_26493_1855_3974_823_068,
     author = {Yan Yang},
     title = {Remarks on the thickness of {K_n,n,n}},
     journal = {Ars Mathematica Contemporanea},
     pages = {135--144},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2017},
     doi = {10.26493/1855-3974.823.068},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.823.068/}
}
TY  - JOUR
AU  - Yan Yang
TI  - Remarks on the thickness of K_n,n,n
JO  - Ars Mathematica Contemporanea
PY  - 2017
SP  - 135
EP  - 144
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.823.068/
DO  - 10.26493/1855-3974.823.068
LA  - en
ID  - 10_26493_1855_3974_823_068
ER  - 
%0 Journal Article
%A Yan Yang
%T Remarks on the thickness of K_n,n,n
%J Ars Mathematica Contemporanea
%D 2017
%P 135-144
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.823.068/
%R 10.26493/1855-3974.823.068
%G en
%F 10_26493_1855_3974_823_068
Yan Yang. Remarks on the thickness of K_n,n,n. Ars Mathematica Contemporanea, Tome 12 (2017) no. 1, pp. 135-144. doi : 10.26493/1855-3974.823.068. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.823.068/

Cité par Sources :