The strong metric dimension of generalized Sierpiński graphs with pendant vertices
Ars Mathematica Contemporanea, Tome 12 (2017) no. 1, pp. 127-134.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let G be a connected graph of order n having ɛ(G) end-vertices. Given a positive integer t, we denote by S(G, t) the t-th generalized Sierpiński graph of G. In this note we show that if every internal vertex of G is a cut vertex, then the strong metric dimension of S(G, t) is given by dims(S(G, t)) = (ɛ(G)(nt − 2nt − 1 + 1) − n + 1) / (n − 1).
DOI : 10.26493/1855-3974.813.903
Keywords: Strong metric dimension, Sierpiński graphs
@article{10_26493_1855_3974_813_903,
     author = {Ehsan Estaji and Juan Alberto Rodr{\'\i}guez-Vel\'azquez},
     title = {The strong metric dimension of generalized {Sierpi\'nski} graphs with pendant vertices},
     journal = {Ars Mathematica Contemporanea},
     pages = {127--134},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2017},
     doi = {10.26493/1855-3974.813.903},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.813.903/}
}
TY  - JOUR
AU  - Ehsan Estaji
AU  - Juan Alberto Rodríguez-Velázquez
TI  - The strong metric dimension of generalized Sierpiński graphs with pendant vertices
JO  - Ars Mathematica Contemporanea
PY  - 2017
SP  - 127
EP  - 134
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.813.903/
DO  - 10.26493/1855-3974.813.903
LA  - en
ID  - 10_26493_1855_3974_813_903
ER  - 
%0 Journal Article
%A Ehsan Estaji
%A Juan Alberto Rodríguez-Velázquez
%T The strong metric dimension of generalized Sierpiński graphs with pendant vertices
%J Ars Mathematica Contemporanea
%D 2017
%P 127-134
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.813.903/
%R 10.26493/1855-3974.813.903
%G en
%F 10_26493_1855_3974_813_903
Ehsan Estaji; Juan Alberto Rodríguez-Velázquez. The strong metric dimension of generalized Sierpiński graphs with pendant vertices. Ars Mathematica Contemporanea, Tome 12 (2017) no. 1, pp. 127-134. doi : 10.26493/1855-3974.813.903. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.813.903/

Cité par Sources :