Classification of convex polyhedra by their rotational orbit Euler characteristic
Ars Mathematica Contemporanea, Tome 13 (2017) no. 1, pp. 23-30.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let P be a polyhedron whose boundary consists of flat polygonal faces on some compact surface S(P) (not necessarily homeomorphic to the sphere S2). Let voR(P), eoR(P),  foR(P) be the numbers of rotational orbits of vertices, edges and faces, respectively, determined by the group G = GR(P) of all the rotations of the Euclidean space E3 preserving P. We define the rotational orbit Euler characteristic of P as the number EoR(P) = voR(P) − eoR(P) + foR(P).Using the Burnside lemma we obtain the lower and the upper bound for EoR(P) in terms of the genus of the surface S(P). We prove that EoR ∈ {2, 1, 0,  − 1} for any convex polyhedron P. In the non-convex case EoR may be arbitrarily large or small.
DOI : 10.26493/1855-3974.805.8bd
Keywords: Polyhedron, rotational orbit, Euler characteristic
@article{10_26493_1855_3974_805_8bd,
     author = {Jurij Kovi\v{c}},
     title = {Classification of convex polyhedra by their rotational orbit {Euler} characteristic},
     journal = {Ars Mathematica Contemporanea},
     pages = {23--30},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2017},
     doi = {10.26493/1855-3974.805.8bd},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.805.8bd/}
}
TY  - JOUR
AU  - Jurij Kovič
TI  - Classification of convex polyhedra by their rotational orbit Euler characteristic
JO  - Ars Mathematica Contemporanea
PY  - 2017
SP  - 23
EP  - 30
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.805.8bd/
DO  - 10.26493/1855-3974.805.8bd
LA  - en
ID  - 10_26493_1855_3974_805_8bd
ER  - 
%0 Journal Article
%A Jurij Kovič
%T Classification of convex polyhedra by their rotational orbit Euler characteristic
%J Ars Mathematica Contemporanea
%D 2017
%P 23-30
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.805.8bd/
%R 10.26493/1855-3974.805.8bd
%G en
%F 10_26493_1855_3974_805_8bd
Jurij Kovič. Classification of convex polyhedra by their rotational orbit Euler characteristic. Ars Mathematica Contemporanea, Tome 13 (2017) no. 1, pp. 23-30. doi : 10.26493/1855-3974.805.8bd. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.805.8bd/

Cité par Sources :