Mathematical aspects of Wiener index
Ars Mathematica Contemporanea, Tome 11 (2016) no. 2, pp. 327-352.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The Wiener index (i.e., the total distance or the transmission number), defined as the sum of distances between all unordered pairs of vertices in a graph, is one of the most popular molecular descriptors. In this article we summarize some results, conjectures and problems on this molecular descriptor, with emphasis on works we were involved in.
DOI : 10.26493/1855-3974.795.ebf
Keywords: Graph distance, Wiener index, average distance, topological index, molecular descriptor, chemical graph theory
@article{10_26493_1855_3974_795_ebf,
     author = {Martin Knor and Riste \v{S}krekovski and Aleksandra Tepeh},
     title = {Mathematical aspects of {Wiener} index},
     journal = {Ars Mathematica Contemporanea},
     pages = {327--352},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     doi = {10.26493/1855-3974.795.ebf},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.795.ebf/}
}
TY  - JOUR
AU  - Martin Knor
AU  - Riste Škrekovski
AU  - Aleksandra Tepeh
TI  - Mathematical aspects of Wiener index
JO  - Ars Mathematica Contemporanea
PY  - 2016
SP  - 327
EP  - 352
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.795.ebf/
DO  - 10.26493/1855-3974.795.ebf
LA  - en
ID  - 10_26493_1855_3974_795_ebf
ER  - 
%0 Journal Article
%A Martin Knor
%A Riste Škrekovski
%A Aleksandra Tepeh
%T Mathematical aspects of Wiener index
%J Ars Mathematica Contemporanea
%D 2016
%P 327-352
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.795.ebf/
%R 10.26493/1855-3974.795.ebf
%G en
%F 10_26493_1855_3974_795_ebf
Martin Knor; Riste Škrekovski; Aleksandra Tepeh. Mathematical aspects of Wiener index. Ars Mathematica Contemporanea, Tome 11 (2016) no. 2, pp. 327-352. doi : 10.26493/1855-3974.795.ebf. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.795.ebf/

Cité par Sources :