The endomorphisms of Grassmann graphs
Ars Mathematica Contemporanea, Tome 10 (2016) no. 2, pp. 383-392.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A graph G is a core if every endomorphism of G is an automorphism. A graph is called a pseudo-core if every its endomorphism is either an automorphism or a colouring. Suppose that Jq(n, m) is a Grassmann graph over a finite field with q elements. We show that every Grassmann graph is a pseudo-core. Moreover, J2(4, 2) is not a core and Jq(2k + 1, 2) (k ≥ 2) is a core.
DOI : 10.26493/1855-3974.780.362
Keywords: Grassmann graph, core, pseudo-core, endomorphism, maximal clique
@article{10_26493_1855_3974_780_362,
     author = {Li-Ping Huang and Benjian Lv and Kaishun Wang},
     title = {The endomorphisms  of {Grassmann} graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {383--392},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2016},
     doi = {10.26493/1855-3974.780.362},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.780.362/}
}
TY  - JOUR
AU  - Li-Ping Huang
AU  - Benjian Lv
AU  - Kaishun Wang
TI  - The endomorphisms  of Grassmann graphs
JO  - Ars Mathematica Contemporanea
PY  - 2016
SP  - 383
EP  - 392
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.780.362/
DO  - 10.26493/1855-3974.780.362
LA  - en
ID  - 10_26493_1855_3974_780_362
ER  - 
%0 Journal Article
%A Li-Ping Huang
%A Benjian Lv
%A Kaishun Wang
%T The endomorphisms  of Grassmann graphs
%J Ars Mathematica Contemporanea
%D 2016
%P 383-392
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.780.362/
%R 10.26493/1855-3974.780.362
%G en
%F 10_26493_1855_3974_780_362
Li-Ping Huang; Benjian Lv; Kaishun Wang. The endomorphisms  of Grassmann graphs. Ars Mathematica Contemporanea, Tome 10 (2016) no. 2, pp. 383-392. doi : 10.26493/1855-3974.780.362. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.780.362/

Cité par Sources :