On some generalization of the Möbius configuration
Ars Mathematica Contemporanea, Tome 13 (2017) no. 1, pp. 107-123.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The Möbius (84) configuration is generalized in a purely combinatorial approach. We consider (2nn) configurations M(n, φ) depending on a permutation φ in the symmetric group Sn. Classes of non-isomorphic configurations of this type are determined. The parametric characterization of M(n, φ) is given. The uniqueness of the decomposition of M(n, φ) into two mutually inscribed n-simplices is discussed. The automorphisms of M(n, φ) are characterized for n ≥ 3.
DOI : 10.26493/1855-3974.765.46c
Keywords: Möbius configuration, (8_4) configurations, Möbius pair, n-simplex
@article{10_26493_1855_3974_765_46c,
     author = {Krzysztof Petelczyc},
     title = {On some generalization of the {M\"obius} configuration},
     journal = {Ars Mathematica Contemporanea},
     pages = {107--123},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2017},
     doi = {10.26493/1855-3974.765.46c},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.765.46c/}
}
TY  - JOUR
AU  - Krzysztof Petelczyc
TI  - On some generalization of the Möbius configuration
JO  - Ars Mathematica Contemporanea
PY  - 2017
SP  - 107
EP  - 123
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.765.46c/
DO  - 10.26493/1855-3974.765.46c
LA  - en
ID  - 10_26493_1855_3974_765_46c
ER  - 
%0 Journal Article
%A Krzysztof Petelczyc
%T On some generalization of the Möbius configuration
%J Ars Mathematica Contemporanea
%D 2017
%P 107-123
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.765.46c/
%R 10.26493/1855-3974.765.46c
%G en
%F 10_26493_1855_3974_765_46c
Krzysztof Petelczyc. On some generalization of the Möbius configuration. Ars Mathematica Contemporanea, Tome 13 (2017) no. 1, pp. 107-123. doi : 10.26493/1855-3974.765.46c. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.765.46c/

Cité par Sources :