Squashing maximum packings of 6-cycles into maximum packings of triples
Ars Mathematica Contemporanea, Tome 10 (2016) no. 1, pp. 19-29.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A 6-cycle is said to be squashed if we identify a pair of opposite vertices and name one of them with the other (and thereby turning the 6-cycle into a pair of triples with a common vertex). The squashing problem for 6-cycle systems was introduced by C. C. Lindner, M. Meszka and A. Rosa and completely solved by determining the spectrum. In this paper, by employing PBD and GDD-constructions and filling techniques, we extend this result by squashing maximum packings of Kn with 6-cycles into maximum packings of Kn with triples. More specifically, we establish that for each n ≥ 6, there is a max packing of Kn with 6-cycles that can be squashed into a maximum packing of Kn with triples.
DOI : 10.26493/1855-3974.706.33d
Keywords: Maximum packing with triples, maximum packing with 6-cycles
@article{10_26493_1855_3974_706_33d,
     author = {Curt C. Lindner and Giovanni Lo Faro and Antoinette Tripodi},
     title = {Squashing maximum packings of 6-cycles into maximum packings of triples},
     journal = {Ars Mathematica Contemporanea},
     pages = {19--29},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2016},
     doi = {10.26493/1855-3974.706.33d},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.706.33d/}
}
TY  - JOUR
AU  - Curt C. Lindner
AU  - Giovanni Lo Faro
AU  - Antoinette Tripodi
TI  - Squashing maximum packings of 6-cycles into maximum packings of triples
JO  - Ars Mathematica Contemporanea
PY  - 2016
SP  - 19
EP  - 29
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.706.33d/
DO  - 10.26493/1855-3974.706.33d
LA  - en
ID  - 10_26493_1855_3974_706_33d
ER  - 
%0 Journal Article
%A Curt C. Lindner
%A Giovanni Lo Faro
%A Antoinette Tripodi
%T Squashing maximum packings of 6-cycles into maximum packings of triples
%J Ars Mathematica Contemporanea
%D 2016
%P 19-29
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.706.33d/
%R 10.26493/1855-3974.706.33d
%G en
%F 10_26493_1855_3974_706_33d
Curt C. Lindner; Giovanni Lo Faro; Antoinette Tripodi. Squashing maximum packings of 6-cycles into maximum packings of triples. Ars Mathematica Contemporanea, Tome 10 (2016) no. 1, pp. 19-29. doi : 10.26493/1855-3974.706.33d. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.706.33d/

Cité par Sources :