On convergence of binomial means, and an application to finite Markov chains
Ars Mathematica Contemporanea, Tome 10 (2016) no. 2, pp. 393-410.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

For a sequence {an}n ≥ 0 of real numbers, we define the sequence of its arithmetic means {an * }n ≥ 0 as the sequence of averages of the first n elements of {an}n ≥ 0. For a parameter 0  p  1, we define the sequence of p-binomial means {anp}n ≥ 0 of the sequence {an}n ≥ 0 as the sequence of p-binomially weighted averages of the first n elements of {an}n ≥ 0. We compare the convergence of sequences {an}n ≥ 0, {an * }n ≥ 0 and {anp}n ≥ 0 for various 0  p  1, , we analyze when the convergence of one sequence implies the convergence of the other.While the sequence {an * }n ≥ 0, known also as the sequence of Cesàro means of a sequence, is well studied in the literature, the results about {anp}n ≥ 0 are hard to find. Our main result shows that, if {an}n ≥ 0 is a sequence of non-negative real numbers such that {anp}n ≥ 0 converges to a ∈ R ∪ {∞} for some 0  p  1, then {an * }n ≥ 0 also converges to a. We give an application of this result to finite Markov chains.
DOI : 10.26493/1855-3974.705.56d
Keywords: Sequence, convergence, Cesaro mean, binomial mean, finite Markov chain
@article{10_26493_1855_3974_705_56d,
     author = {David Gajser},
     title = {On convergence of binomial means, and an application to finite {Markov} chains},
     journal = {Ars Mathematica Contemporanea},
     pages = {393--410},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2016},
     doi = {10.26493/1855-3974.705.56d},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.705.56d/}
}
TY  - JOUR
AU  - David Gajser
TI  - On convergence of binomial means, and an application to finite Markov chains
JO  - Ars Mathematica Contemporanea
PY  - 2016
SP  - 393
EP  - 410
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.705.56d/
DO  - 10.26493/1855-3974.705.56d
LA  - en
ID  - 10_26493_1855_3974_705_56d
ER  - 
%0 Journal Article
%A David Gajser
%T On convergence of binomial means, and an application to finite Markov chains
%J Ars Mathematica Contemporanea
%D 2016
%P 393-410
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.705.56d/
%R 10.26493/1855-3974.705.56d
%G en
%F 10_26493_1855_3974_705_56d
David Gajser. On convergence of binomial means, and an application to finite Markov chains. Ars Mathematica Contemporanea, Tome 10 (2016) no. 2, pp. 393-410. doi : 10.26493/1855-3974.705.56d. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.705.56d/

Cité par Sources :