Non-negative spectrum of a digraph
Ars Mathematica Contemporanea, Tome 12 (2017) no. 1, pp. 167-182.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Digraphs are considered by means of eigenvalues of the matrix AAT, and similarly ATA, where A is the adjacency matrix of a digraph. The common spectrum of these matrices is called non-negative spectrum or N-spectrum of a digraph. Several properties of the N-spectrum are proved. The notion of cospectrality is generalized, and some examples of cospectral (multi)(di)graphs are constructed.
DOI : 10.26493/1855-3974.682.065
Keywords: Digraph, non-negative spectrum, multigraph, cospectrality, isomorphism
@article{10_26493_1855_3974_682_065,
     author = {Irena M. Jovanovi\'c},
     title = {Non-negative spectrum of a digraph},
     journal = {Ars Mathematica Contemporanea},
     pages = {167--182},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2017},
     doi = {10.26493/1855-3974.682.065},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.682.065/}
}
TY  - JOUR
AU  - Irena M. Jovanović
TI  - Non-negative spectrum of a digraph
JO  - Ars Mathematica Contemporanea
PY  - 2017
SP  - 167
EP  - 182
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.682.065/
DO  - 10.26493/1855-3974.682.065
LA  - en
ID  - 10_26493_1855_3974_682_065
ER  - 
%0 Journal Article
%A Irena M. Jovanović
%T Non-negative spectrum of a digraph
%J Ars Mathematica Contemporanea
%D 2017
%P 167-182
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.682.065/
%R 10.26493/1855-3974.682.065
%G en
%F 10_26493_1855_3974_682_065
Irena M. Jovanović. Non-negative spectrum of a digraph. Ars Mathematica Contemporanea, Tome 12 (2017) no. 1, pp. 167-182. doi : 10.26493/1855-3974.682.065. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.682.065/

Cité par Sources :