On the inertia of weighted (k-1)-cyclic graphs
Ars Mathematica Contemporanea, Tome 11 (2016) no. 2, pp. 285-299.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let Gw be a weighted graph. The inertia of Gw is the triple In(Gw) = (i + (Gw), i − (Gw), i0(Gw)), where i + (Gw), i − (Gw), i0(Gw) are, respectively, the number of the positive, negative and zero eigenvalues of the adjacency matrix A(Gw) of Gw including their multiplicities. A simple n-vertex connected graph is called a (k − 1)-cyclic graph provided that its number of edges equals n + k − 2. Let θ(r1, r2, …, rk)w be an n-vertex simple weighted graph obtained from k weighted paths (Pr1)w, (Pr2)w, …, (Prk)w by identifying their initial vertices and terminal vertices, respectively. Set Θ k:  = {θ(r1, r2, …, rk)w: r1 + r2 + ⋯ + rk = n + 2k − 2}.  The inertia of the weighted graph θ(r1, r2, …, rk)w is studied. Also, the weighted (k − 1)-cyclic graphs that contain θ(r1, r2, …, rk)w as an induced subgraph are studied. We characterize those graphs among Θ k that have extreme inertia. The results generalize the corresponding results obtained in [X.Z. Tan, B.L. Liu, The nullity of (k − 1)-cyclic graphs, Linear Algebra Appl. 438 (2013) 3144-3153] and [G.H. Yu et al., The inertia of weighted unicyclic graphs, Linear Algebra Appl. 448 (2014) 130-152].
DOI : 10.26493/1855-3974.673.4a1
Keywords: Weighted k-cyclic graph, adjacency matrix, inertia
@article{10_26493_1855_3974_673_4a1,
     author = {Shibing Deng and Shuchao Li and Feifei Song},
     title = {On the inertia of weighted (k-1)-cyclic graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {285--299},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     doi = {10.26493/1855-3974.673.4a1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.673.4a1/}
}
TY  - JOUR
AU  - Shibing Deng
AU  - Shuchao Li
AU  - Feifei Song
TI  - On the inertia of weighted (k-1)-cyclic graphs
JO  - Ars Mathematica Contemporanea
PY  - 2016
SP  - 285
EP  - 299
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.673.4a1/
DO  - 10.26493/1855-3974.673.4a1
LA  - en
ID  - 10_26493_1855_3974_673_4a1
ER  - 
%0 Journal Article
%A Shibing Deng
%A Shuchao Li
%A Feifei Song
%T On the inertia of weighted (k-1)-cyclic graphs
%J Ars Mathematica Contemporanea
%D 2016
%P 285-299
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.673.4a1/
%R 10.26493/1855-3974.673.4a1
%G en
%F 10_26493_1855_3974_673_4a1
Shibing Deng; Shuchao Li; Feifei Song. On the inertia of weighted (k-1)-cyclic graphs. Ars Mathematica Contemporanea, Tome 11 (2016) no. 2, pp. 285-299. doi : 10.26493/1855-3974.673.4a1. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.673.4a1/

Cité par Sources :