A universality theorem for stressable graphs in the plane
Ars Mathematica Contemporanea, Tome 18 (2020) no. 1, pp. 137-148.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Universality theorems (in the sense of N. Mnëv) claim that the realization space of a combinatorial object (a point configuration, a hyperplane arrangement, a convex polytope, etc.) can be arbitrarily complicated. In the paper, we prove a universality theorem for a graph in the plane with a prescribed oriented matroid of stresses, that is the collection of signs of all possible equilibrium stresses of the graph.This research is motivated by the Grassmanian stratification (Gelfand, Goresky, MacPherson, Serganova) by thin Schubert cells, and by a recent series of papers on stratifications of configuration spaces of tensegrities (Doray, Karpenkov, Schepers, Servatius).
DOI : 10.26493/1855-3974.641.e06
Keywords: Maxwell-Cremona correspondence, Grassmanian stratification, oriented matroid, equilibrium stress
@article{10_26493_1855_3974_641_e06,
     author = {Gaiane Panina},
     title = {A universality theorem for stressable graphs in the plane},
     journal = {Ars Mathematica Contemporanea},
     pages = {137--148},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2020},
     doi = {10.26493/1855-3974.641.e06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.641.e06/}
}
TY  - JOUR
AU  - Gaiane Panina
TI  - A universality theorem for stressable graphs in the plane
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 137
EP  - 148
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.641.e06/
DO  - 10.26493/1855-3974.641.e06
LA  - en
ID  - 10_26493_1855_3974_641_e06
ER  - 
%0 Journal Article
%A Gaiane Panina
%T A universality theorem for stressable graphs in the plane
%J Ars Mathematica Contemporanea
%D 2020
%P 137-148
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.641.e06/
%R 10.26493/1855-3974.641.e06
%G en
%F 10_26493_1855_3974_641_e06
Gaiane Panina. A universality theorem for stressable graphs in the plane. Ars Mathematica Contemporanea, Tome 18 (2020) no. 1, pp. 137-148. doi : 10.26493/1855-3974.641.e06. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.641.e06/

Cité par Sources :