Edge looseness of plane graphs
Ars Mathematica Contemporanea, Tome 9 (2015) no. 2, pp. 279-286.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A face of an edge colored plane graph is called e-loose if the number of colors used on its edges is at least three. The e-looseness of a plane graph G is the minimum positive integer k such that any edge coloring of G with k colors involves an e-loose face. In this paper we determine tight lower and upper bounds for the e-looseness of connected plane graphs. These bounds are expressed by linear polynomials of the number of faces.
DOI : 10.26493/1855-3974.609.e4d
Keywords: Plane graph, edge coloring.
@article{10_26493_1855_3974_609_e4d,
     author = {J\'ulius Czap},
     title = {Edge looseness of plane graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {279--286},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2015},
     doi = {10.26493/1855-3974.609.e4d},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.609.e4d/}
}
TY  - JOUR
AU  - Július Czap
TI  - Edge looseness of plane graphs
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 279
EP  - 286
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.609.e4d/
DO  - 10.26493/1855-3974.609.e4d
LA  - en
ID  - 10_26493_1855_3974_609_e4d
ER  - 
%0 Journal Article
%A Július Czap
%T Edge looseness of plane graphs
%J Ars Mathematica Contemporanea
%D 2015
%P 279-286
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.609.e4d/
%R 10.26493/1855-3974.609.e4d
%G en
%F 10_26493_1855_3974_609_e4d
Július Czap. Edge looseness of plane graphs. Ars Mathematica Contemporanea, Tome 9 (2015) no. 2, pp. 279-286. doi : 10.26493/1855-3974.609.e4d. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.609.e4d/

Cité par Sources :