The Cayley isomorphism property for groups of order 8p
Ars Mathematica Contemporanea, Tome 8 (2015) no. 2, pp. 433-444.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

For every prime p > 3 we prove that Q x Z_p is a DCI-group. Using the same method we reprove the fact that Z_2^3 x Z_p is a CI-group for every prime p > 3, which was obtained in E. Dobson, P. Spiga, CI-groups with respect to ternary relational structures: new examples, Ars Math. Contemp. 6 (2012), 351-364. This result completes the description of CI-groups of order 8p.
DOI : 10.26493/1855-3974.593.12f
Keywords: Cayley graphs, CI-groups.
@article{10_26493_1855_3974_593_12f,
     author = {G\'abor Somlai},
     title = {The {Cayley} isomorphism property for groups of order 8p},
     journal = {Ars Mathematica Contemporanea},
     pages = {433--444},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2015},
     doi = {10.26493/1855-3974.593.12f},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.593.12f/}
}
TY  - JOUR
AU  - Gábor Somlai
TI  - The Cayley isomorphism property for groups of order 8p
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 433
EP  - 444
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.593.12f/
DO  - 10.26493/1855-3974.593.12f
LA  - en
ID  - 10_26493_1855_3974_593_12f
ER  - 
%0 Journal Article
%A Gábor Somlai
%T The Cayley isomorphism property for groups of order 8p
%J Ars Mathematica Contemporanea
%D 2015
%P 433-444
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.593.12f/
%R 10.26493/1855-3974.593.12f
%G en
%F 10_26493_1855_3974_593_12f
Gábor Somlai. The Cayley isomorphism property for groups of order 8p. Ars Mathematica Contemporanea, Tome 8 (2015) no. 2, pp. 433-444. doi : 10.26493/1855-3974.593.12f. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.593.12f/

Cité par Sources :