Alternating plane graphs
Ars Mathematica Contemporanea, Tome 8 (2015) no. 2, pp. 337-363.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A plane graph is called alternating if all adjacent vertices have different degrees, and all neighboring faces as well. Alternating plane graphs were introduced in 2008. This paper presents the previous research on alternating plane graphs.There are two smallest alternating plane graphs, having 17 vertices and 17 faces each. There is no alternating plane graph with 18 vertices, but alternating plane graphs exist for all cardinalities from 19 on. From a small set of initial building blocks, alternating plane graphs can be constructed for all large cardinalities. Many of the small alternating plane graphs have been found with extensive computer help.Theoretical results on alternating plane graphs are included where all degrees have to be from the set {3,4,5}. In addition, several classes of “weak alternating plane graphs” (with vertices of degree 2) are presented.
DOI : 10.26493/1855-3974.584.09a
Keywords: Plane graph, alternating degrees, exhaustive search, heuristic search.
@article{10_26493_1855_3974_584_09a,
     author = {Ingo Alth\"ofer and Jan Kristian Haugland and Karl Scherer and Frank Schneider and Nico Van Cleemput},
     title = {Alternating plane graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {337--363},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2015},
     doi = {10.26493/1855-3974.584.09a},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.584.09a/}
}
TY  - JOUR
AU  - Ingo Althöfer
AU  - Jan Kristian Haugland
AU  - Karl Scherer
AU  - Frank Schneider
AU  - Nico Van Cleemput
TI  - Alternating plane graphs
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 337
EP  - 363
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.584.09a/
DO  - 10.26493/1855-3974.584.09a
LA  - en
ID  - 10_26493_1855_3974_584_09a
ER  - 
%0 Journal Article
%A Ingo Althöfer
%A Jan Kristian Haugland
%A Karl Scherer
%A Frank Schneider
%A Nico Van Cleemput
%T Alternating plane graphs
%J Ars Mathematica Contemporanea
%D 2015
%P 337-363
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.584.09a/
%R 10.26493/1855-3974.584.09a
%G en
%F 10_26493_1855_3974_584_09a
Ingo Althöfer; Jan Kristian Haugland; Karl Scherer; Frank Schneider; Nico Van Cleemput. Alternating plane graphs. Ars Mathematica Contemporanea, Tome 8 (2015) no. 2, pp. 337-363. doi : 10.26493/1855-3974.584.09a. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.584.09a/

Cité par Sources :