Cube-contractions in 3-connected quadrangulations
Ars Mathematica Contemporanea, Tome 10 (2016) no. 2, pp. 281-290.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A 3-connected quadrangulation of a closed surface is said to be Kʹ3-irreducible if no face- or cube-contraction preserves simplicity and 3-connectedness. In this paper, we prove that a Kʹ3-irreducible quadrangulation of a closed surface except the sphere and the projective plane is either (i) irreducible or (ii) obtained from an irreducible quadrangulation H by applying 4-cycle additions to F0 ⊆ F(H) where F(H) stands for the set of faces of H. We also determine Kʹ3-irreducible quadrangulations of the sphere and the projective plane. These results imply new generating theorems of 3-connected quadrangulations of closed surfaces.
DOI : 10.26493/1855-3974.552.bf3
Keywords: Quadrangulation, closed surface, generating theorem
@article{10_26493_1855_3974_552_bf3,
     author = {Yusuke Suzuki},
     title = {Cube-contractions in 3-connected quadrangulations},
     journal = {Ars Mathematica Contemporanea},
     pages = {281--290},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2016},
     doi = {10.26493/1855-3974.552.bf3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.552.bf3/}
}
TY  - JOUR
AU  - Yusuke Suzuki
TI  - Cube-contractions in 3-connected quadrangulations
JO  - Ars Mathematica Contemporanea
PY  - 2016
SP  - 281
EP  - 290
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.552.bf3/
DO  - 10.26493/1855-3974.552.bf3
LA  - en
ID  - 10_26493_1855_3974_552_bf3
ER  - 
%0 Journal Article
%A Yusuke Suzuki
%T Cube-contractions in 3-connected quadrangulations
%J Ars Mathematica Contemporanea
%D 2016
%P 281-290
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.552.bf3/
%R 10.26493/1855-3974.552.bf3
%G en
%F 10_26493_1855_3974_552_bf3
Yusuke Suzuki. Cube-contractions in 3-connected quadrangulations. Ars Mathematica Contemporanea, Tome 10 (2016) no. 2, pp. 281-290. doi : 10.26493/1855-3974.552.bf3. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.552.bf3/

Cité par Sources :