Isospectral genus two graphs are isomorphic
Ars Mathematica Contemporanea, Tome 10 (2016) no. 2, pp. 223-235.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

By a graph we mean a finite connected multigraph without bridges. The genus of a graph is the dimension of its homology group. Two graphs are isospectral is they share the same Laplacian spectrum. We prove that two genus two graphs are isospectral if and only if they are isomorphic. Also, we present two bridgeless genus three graphs that are not isomorphic. The paper is motivated by the following open problem posed by Peter Buser: are isospectral Riemann surfaces of genus two isometric?
DOI : 10.26493/1855-3974.550.e1a
Keywords: Graph, Laplacian spectrum, isospectral graphs, Laplacian polynomial, spanning tree
@article{10_26493_1855_3974_550_e1a,
     author = {Alexander D. Mednykh and Ilya A. Mednykh},
     title = {Isospectral genus two graphs are isomorphic},
     journal = {Ars Mathematica Contemporanea},
     pages = {223--235},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2016},
     doi = {10.26493/1855-3974.550.e1a},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.550.e1a/}
}
TY  - JOUR
AU  - Alexander D. Mednykh
AU  - Ilya A. Mednykh
TI  - Isospectral genus two graphs are isomorphic
JO  - Ars Mathematica Contemporanea
PY  - 2016
SP  - 223
EP  - 235
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.550.e1a/
DO  - 10.26493/1855-3974.550.e1a
LA  - en
ID  - 10_26493_1855_3974_550_e1a
ER  - 
%0 Journal Article
%A Alexander D. Mednykh
%A Ilya A. Mednykh
%T Isospectral genus two graphs are isomorphic
%J Ars Mathematica Contemporanea
%D 2016
%P 223-235
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.550.e1a/
%R 10.26493/1855-3974.550.e1a
%G en
%F 10_26493_1855_3974_550_e1a
Alexander D. Mednykh; Ilya A. Mednykh. Isospectral genus two graphs are isomorphic. Ars Mathematica Contemporanea, Tome 10 (2016) no. 2, pp. 223-235. doi : 10.26493/1855-3974.550.e1a. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.550.e1a/

Cité par Sources :