Chamfering operation on k-orbit maps
Ars Mathematica Contemporanea, Tome 7 (2014) no. 2, pp. 519-536.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A map, as a 2-cell embedding of a graph on a closed surface, is called a k-orbit map if the group of automorphisms (or symmetries) of the map partitions its set of flags into k orbits. Orbanić, Pellicer and Weiss studied the effects of operations as medial and truncation on k-orbit maps. In this paper we study the possible symmetry types of maps that result from other maps after applying the chamfering operation and we give the number of possible flag-orbits that has the chamfering map of a k-orbit map, even if we repeat this operation t times.
DOI : 10.26493/1855-3974.541.133
Keywords: Map, flag graph, symmetry type graph, chamfering operation.
@article{10_26493_1855_3974_541_133,
     author = {Mar{\'\i}a del R{\'\i}o Francos},
     title = {Chamfering operation on k-orbit maps},
     journal = {Ars Mathematica Contemporanea},
     pages = {519--536},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2014},
     doi = {10.26493/1855-3974.541.133},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.541.133/}
}
TY  - JOUR
AU  - María del Río Francos
TI  - Chamfering operation on k-orbit maps
JO  - Ars Mathematica Contemporanea
PY  - 2014
SP  - 519
EP  - 536
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.541.133/
DO  - 10.26493/1855-3974.541.133
LA  - en
ID  - 10_26493_1855_3974_541_133
ER  - 
%0 Journal Article
%A María del Río Francos
%T Chamfering operation on k-orbit maps
%J Ars Mathematica Contemporanea
%D 2014
%P 519-536
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.541.133/
%R 10.26493/1855-3974.541.133
%G en
%F 10_26493_1855_3974_541_133
María del Río Francos. Chamfering operation on k-orbit maps. Ars Mathematica Contemporanea, Tome 7 (2014) no. 2, pp. 519-536. doi : 10.26493/1855-3974.541.133. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.541.133/

Cité par Sources :