Counting edge-transitive, one-ended, three-connected planar maps with a given growth rate
Ars Mathematica Contemporanea, Tome 2 (2009) no. 2, pp. 173-180.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

B. Grünbaum and G. C. Shephard have classified one-ended, 3-connected, planar, edge-transitive maps. It turns out that each of these maps can be described uniquely by an edge-symbol ‹p, q; k, ℓ›. Recently the growth rate of each of these maps has been determined by S. Graves, T. Pisanski and M. E. Watkins. We determine the number of edge-transitive maps for a given growth rate.
DOI : 10.26493/1855-3974.52.121
Keywords: Edge-transitive map, enumeration, hyperbolic plane
@article{10_26493_1855_3974_52_121,
     author = {Toma\v{z} Pisanski},
     title = {Counting edge-transitive, one-ended, three-connected planar maps with a given growth rate},
     journal = {Ars Mathematica Contemporanea},
     pages = {173--180},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2009},
     doi = {10.26493/1855-3974.52.121},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.52.121/}
}
TY  - JOUR
AU  - Tomaž Pisanski
TI  - Counting edge-transitive, one-ended, three-connected planar maps with a given growth rate
JO  - Ars Mathematica Contemporanea
PY  - 2009
SP  - 173
EP  - 180
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.52.121/
DO  - 10.26493/1855-3974.52.121
LA  - en
ID  - 10_26493_1855_3974_52_121
ER  - 
%0 Journal Article
%A Tomaž Pisanski
%T Counting edge-transitive, one-ended, three-connected planar maps with a given growth rate
%J Ars Mathematica Contemporanea
%D 2009
%P 173-180
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.52.121/
%R 10.26493/1855-3974.52.121
%G en
%F 10_26493_1855_3974_52_121
Tomaž Pisanski. Counting edge-transitive, one-ended, three-connected planar maps with a given growth rate. Ars Mathematica Contemporanea, Tome 2 (2009) no. 2, pp. 173-180. doi : 10.26493/1855-3974.52.121. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.52.121/

Cité par Sources :