Quartic integral Cayley graphs
Ars Mathematica Contemporanea, Tome 8 (2015) no. 2, pp. 381-408.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We give exhaustive lists of connected 4-regular integral Cayley graphs and connected 4-regular integral arc-transitive graphs. An integral graph is a graph for which all eigenvalues are integers. A Cayley graph Cay(Γ, S) for a given group Γ and connection set S ⊂ Γ is the graph with vertex set Γ and with a connected to b if and only if ba−1 ∈ S. Up to isomorphism, we find that there are 32 connected quartic integral Cayley graphs; 17 of which are bipartite. Many of these can be realized in a number of different ways by using non-isomorphic choices for Γ and/or S. A graph is arc-transitive if its automorphism group acts transitively upon ordered pairs of adjacent vertices. Up to isomorphism, there are 27 quartic integral graphs that are arc-transitive. Of these 27 graphs, 16 are bipartite and 16 are Cayley graphs. By taking quotients of our Cayley or arc-transitive graphs we also find a number of other quartic integral graphs. Overall, we find 9 new spectra that can be realised by bipartite quartic integral graphs.
DOI : 10.26493/1855-3974.502.566
Keywords: Graph spectrum, integral graph, Cayley graph, arc-transitive, vertex-transitive bipartite double cover, voltage assignment, graph homomorphism.
@article{10_26493_1855_3974_502_566,
     author = {Marsha Minchenko and Ian M. Wanless},
     title = {Quartic integral {Cayley} graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {381--408},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2015},
     doi = {10.26493/1855-3974.502.566},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.502.566/}
}
TY  - JOUR
AU  - Marsha Minchenko
AU  - Ian M. Wanless
TI  - Quartic integral Cayley graphs
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 381
EP  - 408
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.502.566/
DO  - 10.26493/1855-3974.502.566
LA  - en
ID  - 10_26493_1855_3974_502_566
ER  - 
%0 Journal Article
%A Marsha Minchenko
%A Ian M. Wanless
%T Quartic integral Cayley graphs
%J Ars Mathematica Contemporanea
%D 2015
%P 381-408
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.502.566/
%R 10.26493/1855-3974.502.566
%G en
%F 10_26493_1855_3974_502_566
Marsha Minchenko; Ian M. Wanless. Quartic integral Cayley graphs. Ars Mathematica Contemporanea, Tome 8 (2015) no. 2, pp. 381-408. doi : 10.26493/1855-3974.502.566. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.502.566/

Cité par Sources :