On spectral radius and energy of complete multipartite graphs
Ars Mathematica Contemporanea, Tome 9 (2015) no. 1, pp. 109-113.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let Kn1, n2, …, np denote the complete p-partite graph, p > 1, on n = n1 + n2 + ⋯ + np vertices and let n1 ≥ n2 ≥ ⋯ ≥ np > 0. We show that for a fixed value of n, both the spectral radius and the energy of complete p-partite graphs are minimal for complete split graph CS(n, p − 1) and are maximal for Turán graph T(n, p).
DOI : 10.26493/1855-3974.499.103
Keywords: Spectral radius of graph, graph energy, complete multipartite graph, complete split graph, Turán graph
@article{10_26493_1855_3974_499_103,
     author = {Dragan Stevanovi\'c and Ivan Gutman and Masood Ur Rehman},
     title = {On spectral radius and energy of complete multipartite graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {109--113},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2015},
     doi = {10.26493/1855-3974.499.103},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.499.103/}
}
TY  - JOUR
AU  - Dragan Stevanović
AU  - Ivan Gutman
AU  - Masood Ur Rehman
TI  - On spectral radius and energy of complete multipartite graphs
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 109
EP  - 113
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.499.103/
DO  - 10.26493/1855-3974.499.103
LA  - en
ID  - 10_26493_1855_3974_499_103
ER  - 
%0 Journal Article
%A Dragan Stevanović
%A Ivan Gutman
%A Masood Ur Rehman
%T On spectral radius and energy of complete multipartite graphs
%J Ars Mathematica Contemporanea
%D 2015
%P 109-113
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.499.103/
%R 10.26493/1855-3974.499.103
%G en
%F 10_26493_1855_3974_499_103
Dragan Stevanović; Ivan Gutman; Masood Ur Rehman. On spectral radius and energy of complete multipartite graphs. Ars Mathematica Contemporanea, Tome 9 (2015) no. 1, pp. 109-113. doi : 10.26493/1855-3974.499.103. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.499.103/

Cité par Sources :