Edmonds maps on Fricke-Macbeath curve
Ars Mathematica Contemporanea, Tome 8 (2015) no. 2, pp. 275-289.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

In 1985, L. D. James and G. A. Jones proved that the complete graph Kn defines a clean dessin d’enfant (the bipartite graph is given by taking as the black vertices the vertices of Kn and the white vertices as middle points of edges) if and only if n = pe, where p is a prime. Later, in 2010, G. A. Jones, M. Streit and J. Wolfart computed the minimal field of definition of them. The minimal genus g > 1 of these types of clean dessins d’enfant is g = 7, obtained for p = 2 and e = 3. In that case, there are exactly two such clean dessins d’enfant (previously known as Edmonds maps), both of them defining the Fricke-Macbeath curve (the only Hurwitz curve of genus 7) and both forming a chiral pair. The uniqueness of the Fricke-Macbeath curve asserts that it is definable over Q, but both Edmonds maps cannot be defined over Q; in fact they have as minimal field of definition the quadratic field Q(sqrt( − 7)). It seems that no explicit models for the Edmonds maps over Q(sqrt( − 7)) are written in the literature. In this paper we start with an explicit model X for the Fricke-Macbeath curve provided by Macbeath, which is defined over Q(e2πi / 7), and we construct an explicit birational isomorphismL: X → Z, where Z is defined over Q(sqrt( − 7)), so that both Edmonds maps are also defined over that field.
DOI : 10.26493/1855-3974.496.61a
Keywords: Riemann surface, algebraic curve, dessin d’enfant
@article{10_26493_1855_3974_496_61a,
     author = {Rub\'en A. Hidalgo},
     title = {Edmonds maps on {Fricke-Macbeath} curve},
     journal = {Ars Mathematica Contemporanea},
     pages = {275--289},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2015},
     doi = {10.26493/1855-3974.496.61a},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.496.61a/}
}
TY  - JOUR
AU  - Rubén A. Hidalgo
TI  - Edmonds maps on Fricke-Macbeath curve
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 275
EP  - 289
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.496.61a/
DO  - 10.26493/1855-3974.496.61a
LA  - en
ID  - 10_26493_1855_3974_496_61a
ER  - 
%0 Journal Article
%A Rubén A. Hidalgo
%T Edmonds maps on Fricke-Macbeath curve
%J Ars Mathematica Contemporanea
%D 2015
%P 275-289
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.496.61a/
%R 10.26493/1855-3974.496.61a
%G en
%F 10_26493_1855_3974_496_61a
Rubén A. Hidalgo. Edmonds maps on Fricke-Macbeath curve. Ars Mathematica Contemporanea, Tome 8 (2015) no. 2, pp. 275-289. doi : 10.26493/1855-3974.496.61a. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.496.61a/

Cité par Sources :