Subdivision into i-packings and S-packing chromatic number of some lattices
Ars Mathematica Contemporanea, Tome 9 (2015) no. 2, pp. 321-344.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

An i-packing in a graph G is a set of vertices at pairwise distance greater than i. For a nondecreasing sequence of integers S=(s_1,s_2,...), the S-packing chromatic number of a graph G is the least integer k such that there exists a coloring of G into k colors where each set of vertices colored i, i=1,..., k, is an s_i-packing.This paper describes various subdivisions of an i-packing into j-packings (j>i) for the hexagonal, square and triangular lattices. These results allow us to bound the S-packing chromatic number for these graphs, with more precise bounds and exact values for sequences S=(s_i, i in N*), s_i = d+ [(i-1)/n].
DOI : 10.26493/1855-3974.436.178
Keywords: Packing chromatic number, i-packing, hexagonal lattice, square lattice, triangular lattice, distance coloring.
@article{10_26493_1855_3974_436_178,
     author = {Nicolas Gastineau and Hamamache Kheddouci and Olivier Togni},
     title = {Subdivision into i-packings and {S-packing} chromatic number of some lattices},
     journal = {Ars Mathematica Contemporanea},
     pages = {321--344},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2015},
     doi = {10.26493/1855-3974.436.178},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.436.178/}
}
TY  - JOUR
AU  - Nicolas Gastineau
AU  - Hamamache Kheddouci
AU  - Olivier Togni
TI  - Subdivision into i-packings and S-packing chromatic number of some lattices
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 321
EP  - 344
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.436.178/
DO  - 10.26493/1855-3974.436.178
LA  - en
ID  - 10_26493_1855_3974_436_178
ER  - 
%0 Journal Article
%A Nicolas Gastineau
%A Hamamache Kheddouci
%A Olivier Togni
%T Subdivision into i-packings and S-packing chromatic number of some lattices
%J Ars Mathematica Contemporanea
%D 2015
%P 321-344
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.436.178/
%R 10.26493/1855-3974.436.178
%G en
%F 10_26493_1855_3974_436_178
Nicolas Gastineau; Hamamache Kheddouci; Olivier Togni. Subdivision into i-packings and S-packing chromatic number of some lattices. Ars Mathematica Contemporanea, Tome 9 (2015) no. 2, pp. 321-344. doi : 10.26493/1855-3974.436.178. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.436.178/

Cité par Sources :