Laceable knights
Ars Mathematica Contemporanea, Tome 9 (2015) no. 1, pp. 115-124.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A bipartite graph is Hamilton-laceable if for any two vertices in different parts there is a Hamiltonian path from one to the other. Using two main ideas (an algorithm for finding Hamiltonian paths and a decomposition lemma to move from smaller cases to larger) we show that the graph of knight’s moves on an m × n board is Hamilton-laceable iff m ≥ 6, n ≥ 6, and one of m, n is even. We show how the algorithm leads to new conjectures about Hamiltonian paths for various families, such as generalized Petersen graphs, I-graphs, and cubic symmetric graphs.
DOI : 10.26493/1855-3974.420.3c5
Keywords: Hamilton-laceable, generalized Petersen graphs, Hamilton-connected, Hamiltonian paths, knight graph, traceable
@article{10_26493_1855_3974_420_3c5,
     author = {Michael Dupuis and Stan Wagon},
     title = {Laceable knights},
     journal = {Ars Mathematica Contemporanea},
     pages = {115--124},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2015},
     doi = {10.26493/1855-3974.420.3c5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.420.3c5/}
}
TY  - JOUR
AU  - Michael Dupuis
AU  - Stan Wagon
TI  - Laceable knights
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 115
EP  - 124
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.420.3c5/
DO  - 10.26493/1855-3974.420.3c5
LA  - en
ID  - 10_26493_1855_3974_420_3c5
ER  - 
%0 Journal Article
%A Michael Dupuis
%A Stan Wagon
%T Laceable knights
%J Ars Mathematica Contemporanea
%D 2015
%P 115-124
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.420.3c5/
%R 10.26493/1855-3974.420.3c5
%G en
%F 10_26493_1855_3974_420_3c5
Michael Dupuis; Stan Wagon. Laceable knights. Ars Mathematica Contemporanea, Tome 9 (2015) no. 1, pp. 115-124. doi : 10.26493/1855-3974.420.3c5. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.420.3c5/

Cité par Sources :