Minimal covers of equivelar toroidal maps
Ars Mathematica Contemporanea, Tome 9 (2015) no. 1, pp. 77-91.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Given any equivelar map on the torus, it is natural to consider its covering maps. The most basic of these coverings are finite toroidal maps or infinite tessellations of the Euclidean plane. In this paper, we prove that each equivelar map on the torus has a unique minimal toroidal rotary cover and also a unique minimal toroidal regular cover. That is to say, of all the toroidal rotary (or regular) maps covering a given map, there is a unique smallest. Furthermore, using the Gaussian and Eisenstein integers, we construct these covers explicitly.
DOI : 10.26493/1855-3974.406.3ec
Keywords: Minimal covers, Regular and rotary maps, Eisenstein integers
@article{10_26493_1855_3974_406_3ec,
     author = {Kostiantyn Drach and Mark Mixer},
     title = {Minimal covers of equivelar toroidal maps},
     journal = {Ars Mathematica Contemporanea},
     pages = {77--91},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2015},
     doi = {10.26493/1855-3974.406.3ec},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.406.3ec/}
}
TY  - JOUR
AU  - Kostiantyn Drach
AU  - Mark Mixer
TI  - Minimal covers of equivelar toroidal maps
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 77
EP  - 91
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.406.3ec/
DO  - 10.26493/1855-3974.406.3ec
LA  - en
ID  - 10_26493_1855_3974_406_3ec
ER  - 
%0 Journal Article
%A Kostiantyn Drach
%A Mark Mixer
%T Minimal covers of equivelar toroidal maps
%J Ars Mathematica Contemporanea
%D 2015
%P 77-91
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.406.3ec/
%R 10.26493/1855-3974.406.3ec
%G en
%F 10_26493_1855_3974_406_3ec
Kostiantyn Drach; Mark Mixer. Minimal covers of equivelar toroidal maps. Ars Mathematica Contemporanea, Tome 9 (2015) no. 1, pp. 77-91. doi : 10.26493/1855-3974.406.3ec. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.406.3ec/

Cité par Sources :