Kronecker covers, V-construction, unit-distance graphs and isometric point-circle configurations
Ars Mathematica Contemporanea, Tome 7 (2014) no. 2, pp. 317-336.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We call a convex polytope P of dimension 3 admissible if it has the following two properties: (1) for each vertex of P the set of its first-neighbours is coplanar; (2) all planes determined by the first-neighbours are distinct. It is shown that the Levi graph of a point-plane configuration obtained by V-construction from an admissible polytope P is the Kronecker cover of the 1-skeleton of P. We investigate the combinatorial nature of the V-construction and use it on unit-distance graphs to construct novel isometric point-circle configurations. In particular, we present an infinite series all of whose members are subconfigurations of the renowned
DOI : 10.26493/1855-3974.359.8eb
Keywords: V-construction, unit-distance graph, isometric point-circle configuration
@article{10_26493_1855_3974_359_8eb,
     author = {G\'abor G\'evay and Toma\v{z} Pisanski},
     title = {Kronecker covers, {V-construction,} unit-distance graphs and isometric point-circle configurations},
     journal = {Ars Mathematica Contemporanea},
     pages = {317--336},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2014},
     doi = {10.26493/1855-3974.359.8eb},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.359.8eb/}
}
TY  - JOUR
AU  - Gábor Gévay
AU  - Tomaž Pisanski
TI  - Kronecker covers, V-construction, unit-distance graphs and isometric point-circle configurations
JO  - Ars Mathematica Contemporanea
PY  - 2014
SP  - 317
EP  - 336
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.359.8eb/
DO  - 10.26493/1855-3974.359.8eb
LA  - en
ID  - 10_26493_1855_3974_359_8eb
ER  - 
%0 Journal Article
%A Gábor Gévay
%A Tomaž Pisanski
%T Kronecker covers, V-construction, unit-distance graphs and isometric point-circle configurations
%J Ars Mathematica Contemporanea
%D 2014
%P 317-336
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.359.8eb/
%R 10.26493/1855-3974.359.8eb
%G en
%F 10_26493_1855_3974_359_8eb
Gábor Gévay; Tomaž Pisanski. Kronecker covers, V-construction, unit-distance graphs and isometric point-circle configurations. Ars Mathematica Contemporanea, Tome 7 (2014) no. 2, pp. 317-336. doi : 10.26493/1855-3974.359.8eb. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.359.8eb/

Cité par Sources :