Minimal equivelar polytopes
Ars Mathematica Contemporanea, Tome 7 (2014) no. 2, pp. 299-315.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Every equivelar abstract polytope of type {p1, …, pn − 1} has at least 2p1⋯pn − 1 flags. In this paper, we study polytopes that attain this lower bound, called tight polytopes. Using properties of flat polytopes, we are able to give a complete local characterization of when a polytope is tight. We then show a way to construct tight polyhedra of type {p, q} when p and q are not both odd, and a way to construct regular tight polytopes of type {2k1, …, 2kn − 1}.
DOI : 10.26493/1855-3974.357.422
Keywords: abstract regular polytope, equivelar polytope, flat polytope, mixing
@article{10_26493_1855_3974_357_422,
     author = {Gabe Cunningham},
     title = {Minimal equivelar polytopes},
     journal = {Ars Mathematica Contemporanea},
     pages = {299--315},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2014},
     doi = {10.26493/1855-3974.357.422},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.357.422/}
}
TY  - JOUR
AU  - Gabe Cunningham
TI  - Minimal equivelar polytopes
JO  - Ars Mathematica Contemporanea
PY  - 2014
SP  - 299
EP  - 315
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.357.422/
DO  - 10.26493/1855-3974.357.422
LA  - en
ID  - 10_26493_1855_3974_357_422
ER  - 
%0 Journal Article
%A Gabe Cunningham
%T Minimal equivelar polytopes
%J Ars Mathematica Contemporanea
%D 2014
%P 299-315
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.357.422/
%R 10.26493/1855-3974.357.422
%G en
%F 10_26493_1855_3974_357_422
Gabe Cunningham. Minimal equivelar polytopes. Ars Mathematica Contemporanea, Tome 7 (2014) no. 2, pp. 299-315. doi : 10.26493/1855-3974.357.422. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.357.422/

Cité par Sources :