Maximum genus, connectivity, and Nebeský's Theorem
Ars Mathematica Contemporanea, Tome 9 (2015) no. 1, pp. 51-61.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We prove lower bounds on the maximum genus of a graph in terms of its connectivity and Betti number (cycle rank). These bounds are tight for all possible values of edge-connectivity and vertex-connectivity and for both simple and non-simple graphs. The use of Nebeský's characterization of maximum genus gives us both shorter proofs and a description of extremal graphs. An additional application of our method shows that the maximum genus is almost additive over the edge cuts.
DOI : 10.26493/1855-3974.356.66e
Keywords: Maximum genus, Nebesky theorem, Betti number, cycle rank, connectivity
@article{10_26493_1855_3974_356_66e,
     author = {Dan Archdeacon and Michal Kotrb\v{c}{\'\i}k and Roman Nedela and Martin \v{S}koviera},
     title = {Maximum genus, connectivity, and {Nebesk\'y's} {Theorem}},
     journal = {Ars Mathematica Contemporanea},
     pages = {51--61},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2015},
     doi = {10.26493/1855-3974.356.66e},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.356.66e/}
}
TY  - JOUR
AU  - Dan Archdeacon
AU  - Michal Kotrbčík
AU  - Roman Nedela
AU  - Martin Škoviera
TI  - Maximum genus, connectivity, and Nebeský's Theorem
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 51
EP  - 61
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.356.66e/
DO  - 10.26493/1855-3974.356.66e
LA  - en
ID  - 10_26493_1855_3974_356_66e
ER  - 
%0 Journal Article
%A Dan Archdeacon
%A Michal Kotrbčík
%A Roman Nedela
%A Martin Škoviera
%T Maximum genus, connectivity, and Nebeský's Theorem
%J Ars Mathematica Contemporanea
%D 2015
%P 51-61
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.356.66e/
%R 10.26493/1855-3974.356.66e
%G en
%F 10_26493_1855_3974_356_66e
Dan Archdeacon; Michal Kotrbčík; Roman Nedela; Martin Škoviera. Maximum genus, connectivity, and Nebeský's Theorem. Ars Mathematica Contemporanea, Tome 9 (2015) no. 1, pp. 51-61. doi : 10.26493/1855-3974.356.66e. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.356.66e/

Cité par Sources :