Super connectivity of direct product of graphs
Ars Mathematica Contemporanea, Tome 8 (2015) no. 2, pp. 235-244.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

For a graph G, κ(G) denotes its connectivity. A graph G is super connected, or simply super-κ, if every minimum separating set is the neighborhood of a vertex of G, that is, every minimum separating set isolates a vertex. The direct product G1 × G2 of two graphs G1 and G2 is a graph with vertex set V(G1 × G2) = V(G1) × V(G2) and edge set E(G1 × G2) = {(u1, v1)(u2, v2) ∣ u1u2 ∈ E(G1), v1v2 ∈ E(G2)}. Let Γ  = G × Kn, where G is a non-trivial graph and Kn(n ≥ 3) is a complete graph on n vertices. In this paper, we show that Γ  is not super-κ if and only if either κ(Γ ) = nκ(G), or Γ  ≅ Kℓ, ℓ × K3(ℓ > 0).
DOI : 10.26493/1855-3974.352.7de
Keywords: Super connectivity, direct product, vertex-cut.
@article{10_26493_1855_3974_352_7de,
     author = {Jin-Xin Zhou},
     title = {Super connectivity of direct product of graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {235--244},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2015},
     doi = {10.26493/1855-3974.352.7de},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.352.7de/}
}
TY  - JOUR
AU  - Jin-Xin Zhou
TI  - Super connectivity of direct product of graphs
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 235
EP  - 244
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.352.7de/
DO  - 10.26493/1855-3974.352.7de
LA  - en
ID  - 10_26493_1855_3974_352_7de
ER  - 
%0 Journal Article
%A Jin-Xin Zhou
%T Super connectivity of direct product of graphs
%J Ars Mathematica Contemporanea
%D 2015
%P 235-244
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.352.7de/
%R 10.26493/1855-3974.352.7de
%G en
%F 10_26493_1855_3974_352_7de
Jin-Xin Zhou. Super connectivity of direct product of graphs. Ars Mathematica Contemporanea, Tome 8 (2015) no. 2, pp. 235-244. doi : 10.26493/1855-3974.352.7de. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.352.7de/

Cité par Sources :