Comparing the irregularity and the total irregularity of graphs
Ars Mathematica Contemporanea, Tome 9 (2015) no. 1, pp. 45-50.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Albertson has defined the irregularity of a simple undirected graph G as irr(G) = ∑ uv ∈ E(G)∣dG(u) − dG(v)∣,  where dG(u) denotes the degree of a vertex u ∈ V(G). Recently, in  a new measure of irregularity of a graph, so-called the total irregularity, was defined as irrt(G) = 1/2 ∑ u, v ∈ V(G)∣dG(u) − dG(v)∣.  Here, we compare the irregularity and the total irregularity of graphs. For a connected graph G with n vertices, we show that irrt(G) ≤ n2irr(G) / 4.  Moreover, if G is a tree, then irrt(G) ≤ (n − 2)irr(G).
DOI : 10.26493/1855-3974.341.bab
Keywords: The irregularity of graph, the total irregularity of graph, Zagreb indices
@article{10_26493_1855_3974_341_bab,
     author = {Darko Dimitrov and Riste \v{S}krekovski},
     title = {Comparing the irregularity and the total irregularity of graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {45--50},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2015},
     doi = {10.26493/1855-3974.341.bab},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.341.bab/}
}
TY  - JOUR
AU  - Darko Dimitrov
AU  - Riste Škrekovski
TI  - Comparing the irregularity and the total irregularity of graphs
JO  - Ars Mathematica Contemporanea
PY  - 2015
SP  - 45
EP  - 50
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.341.bab/
DO  - 10.26493/1855-3974.341.bab
LA  - en
ID  - 10_26493_1855_3974_341_bab
ER  - 
%0 Journal Article
%A Darko Dimitrov
%A Riste Škrekovski
%T Comparing the irregularity and the total irregularity of graphs
%J Ars Mathematica Contemporanea
%D 2015
%P 45-50
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.341.bab/
%R 10.26493/1855-3974.341.bab
%G en
%F 10_26493_1855_3974_341_bab
Darko Dimitrov; Riste Škrekovski. Comparing the irregularity and the total irregularity of graphs. Ars Mathematica Contemporanea, Tome 9 (2015) no. 1, pp. 45-50. doi : 10.26493/1855-3974.341.bab. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.341.bab/

Cité par Sources :