On the connectivity of Cartesian product of graphs
Ars Mathematica Contemporanea, Tome 7 (2014) no. 2, pp. 293-297.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We give a new alternative proof of Liouville’s formula which states that for any graphs G and H on at least two vertices, κ(G □ H) = min{κ(G)|H|,  |G|κ(H),  δ(G) + δ(H)}, where κ and δ denote the connectivity number and minimum degree of a given graph, respectively. The main idea of our proof is based on construction of a vertex-fan which connects a vertex from V(G □ H) to a subgraph of G □ H. We also discuss the edge version of this problem as well as formula for products with more than two factors.
DOI : 10.26493/1855-3974.313.e10
Keywords: connectivity, Cartesian product
@article{10_26493_1855_3974_313_e10,
     author = {Jelena Govor\v{c}in and Riste \v{S}krekovski},
     title = {On the connectivity of {Cartesian} product of graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {293--297},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2014},
     doi = {10.26493/1855-3974.313.e10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.313.e10/}
}
TY  - JOUR
AU  - Jelena Govorčin
AU  - Riste Škrekovski
TI  - On the connectivity of Cartesian product of graphs
JO  - Ars Mathematica Contemporanea
PY  - 2014
SP  - 293
EP  - 297
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.313.e10/
DO  - 10.26493/1855-3974.313.e10
LA  - en
ID  - 10_26493_1855_3974_313_e10
ER  - 
%0 Journal Article
%A Jelena Govorčin
%A Riste Škrekovski
%T On the connectivity of Cartesian product of graphs
%J Ars Mathematica Contemporanea
%D 2014
%P 293-297
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.313.e10/
%R 10.26493/1855-3974.313.e10
%G en
%F 10_26493_1855_3974_313_e10
Jelena Govorčin; Riste Škrekovski. On the connectivity of Cartesian product of graphs. Ars Mathematica Contemporanea, Tome 7 (2014) no. 2, pp. 293-297. doi : 10.26493/1855-3974.313.e10. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.313.e10/

Cité par Sources :