Average distance, radius and remoteness of a graph
Ars Mathematica Contemporanea, Tome 7 (2014) no. 2, pp. 441-452.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let G = (V, E) be a connected graph on n vertices. Denote by l-(G) the average distance between all pairs of vertices in G. The remoteness ρ(G) of a connected graph G is the maximum average distance from a vertex of G to all others. The aim of this paper is to show that two conjectures in [1] concerned with average distance, radius and remoteness of a graph are true.[1] M. Aouchiche and P. Hansen, Proximity and remoteness in graphs: results and conjectures, Networks 58 (2011), 95–102.
DOI : 10.26493/1855-3974.312.679
Keywords: Distance, radius, eccentricity, proximity, remoteness.
@article{10_26493_1855_3974_312_679,
     author = {Baoyindureng Wu and Wanping Zhang},
     title = {Average distance, radius and remoteness of a graph},
     journal = {Ars Mathematica Contemporanea},
     pages = {441--452},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2014},
     doi = {10.26493/1855-3974.312.679},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.312.679/}
}
TY  - JOUR
AU  - Baoyindureng Wu
AU  - Wanping Zhang
TI  - Average distance, radius and remoteness of a graph
JO  - Ars Mathematica Contemporanea
PY  - 2014
SP  - 441
EP  - 452
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.312.679/
DO  - 10.26493/1855-3974.312.679
LA  - en
ID  - 10_26493_1855_3974_312_679
ER  - 
%0 Journal Article
%A Baoyindureng Wu
%A Wanping Zhang
%T Average distance, radius and remoteness of a graph
%J Ars Mathematica Contemporanea
%D 2014
%P 441-452
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.312.679/
%R 10.26493/1855-3974.312.679
%G en
%F 10_26493_1855_3974_312_679
Baoyindureng Wu; Wanping Zhang. Average distance, radius and remoteness of a graph. Ars Mathematica Contemporanea, Tome 7 (2014) no. 2, pp. 441-452. doi : 10.26493/1855-3974.312.679. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.312.679/

Cité par Sources :