The core of a vertex-transitive complementary prism
Ars Mathematica Contemporanea, Tome 23 (2023) no. 4, article no. 07, 9 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The complementary prism ΓΓ̄  is obtained from the union of a graph Γ and its complement Γ̄ where each pair of identical vertices in Γ and Γ̄  is joined by an edge. It generalizes the Petersen graph, which is the complementary prism of the pentagon. The core of a vertex-transitive complementary prism is studied. In particular, it is shown that a vertex-transitive complementary prism ΓΓ̄  is a core, i.e. all its endomorphisms are automorphisms, whenever Γ is a core or its core is a complete graph.
DOI : 10.26493/1855-3974.3072.3ec
Keywords: Graph homomorphism, core, complementary prism, self-complementary graph, vertex-transitive graph
@article{10_26493_1855_3974_3072_3ec,
     author = {Marko Orel},
     title = {The core of a vertex-transitive complementary prism},
     journal = {Ars Mathematica Contemporanea},
     eid = {07},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2023},
     doi = {10.26493/1855-3974.3072.3ec},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.3072.3ec/}
}
TY  - JOUR
AU  - Marko Orel
TI  - The core of a vertex-transitive complementary prism
JO  - Ars Mathematica Contemporanea
PY  - 2023
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.3072.3ec/
DO  - 10.26493/1855-3974.3072.3ec
LA  - en
ID  - 10_26493_1855_3974_3072_3ec
ER  - 
%0 Journal Article
%A Marko Orel
%T The core of a vertex-transitive complementary prism
%J Ars Mathematica Contemporanea
%D 2023
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.3072.3ec/
%R 10.26493/1855-3974.3072.3ec
%G en
%F 10_26493_1855_3974_3072_3ec
Marko Orel. The core of a vertex-transitive complementary prism. Ars Mathematica Contemporanea, Tome 23 (2023) no. 4, article  no. 07, 9 p. doi : 10.26493/1855-3974.3072.3ec. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.3072.3ec/

Cité par Sources :