On the lightness of chordal 4-cycle in 1-planar graphs with high minimum degree
Ars Mathematica Contemporanea, Tome 7 (2014) no. 2, pp. 281-291.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A graph G is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. The family of 1-planar graphs with minimum vertex degree at least δ and minimum edge degree at least ɛ is denoted by Pδ1(ɛ). In this paper, it is proved that every graph in P71(14) (resp. P61(13)) contains a copy of chordal 4-cycle with all vertices of degree at most 10 (resp. 12).
DOI : 10.26493/1855-3974.297.fa1
Keywords: 1-planar graph, lightness, cycle, discharging
@article{10_26493_1855_3974_297_fa1,
     author = {Xin Zhang and Guizhen Liu},
     title = {On the lightness of chordal 4-cycle in 1-planar graphs with high minimum degree},
     journal = {Ars Mathematica Contemporanea},
     pages = {281--291},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2014},
     doi = {10.26493/1855-3974.297.fa1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.297.fa1/}
}
TY  - JOUR
AU  - Xin Zhang
AU  - Guizhen Liu
TI  - On the lightness of chordal 4-cycle in 1-planar graphs with high minimum degree
JO  - Ars Mathematica Contemporanea
PY  - 2014
SP  - 281
EP  - 291
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.297.fa1/
DO  - 10.26493/1855-3974.297.fa1
LA  - en
ID  - 10_26493_1855_3974_297_fa1
ER  - 
%0 Journal Article
%A Xin Zhang
%A Guizhen Liu
%T On the lightness of chordal 4-cycle in 1-planar graphs with high minimum degree
%J Ars Mathematica Contemporanea
%D 2014
%P 281-291
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.297.fa1/
%R 10.26493/1855-3974.297.fa1
%G en
%F 10_26493_1855_3974_297_fa1
Xin Zhang; Guizhen Liu. On the lightness of chordal 4-cycle in 1-planar graphs with high minimum degree. Ars Mathematica Contemporanea, Tome 7 (2014) no. 2, pp. 281-291. doi : 10.26493/1855-3974.297.fa1. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.297.fa1/

Cité par Sources :