Using a q-shuffle algebra to describe the basic module V(Λ_0) for the quantized enveloping algebra Uq(sl^2)
Ars Mathematica Contemporanea, Tome 23 (2023) no. 4, article no. 10, 34 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We consider the quantized enveloping algebra Uq(sl^2). and its basic module V(Λ0). This module is infinite-dimensional, irreducible, integrable, and highest-weight. We describe V(Λ0) using a q-shuffle algebra in the following way. Start with the free associative algebra V on two generators x, y. The standard basis for V consists of the words in x, y. In 1995 M. Rosso introduced an associative algebra structure on V, called a q-shuffle algebra. For u, v ∈ {x, y} their q-shuffle product is u ⋆ v = uv + q(u,v)vu, where (u,v) = 2 (resp. (u,v) =  − 2) if u = v (resp. u ≠ v). Let U denote the subalgebra of the q-shuffle algebra V that is generated by x, y. Rosso showed that the algebra U is isomorphic to the positive part of Uq(sl^2). In our first main result, we turn U into a Uq(sl^2).-module. Let U denote the Uq(sl^2).-submodule of U generated by the empty word. In our second main result, we show that the Uq(sl^2).-modules U and V(Λ0) are isomorphic. Let V denote the subspace of V spanned by the words that do not begin with y or xx. In our third main result, we show that U = U ∩ V.
DOI : 10.26493/1855-3974.2948.f25
Keywords: Quantized enveloping algebra, q-Serre relations, basic module, q-shuffle algebra.
@article{10_26493_1855_3974_2948_f25,
     author = {Paul Terwilliger},
     title = {Using a q-shuffle algebra to describe the basic module {V(\ensuremath{\Lambda}_0)} for the quantized enveloping algebra {Uq(sl^2)}},
     journal = {Ars Mathematica Contemporanea},
     eid = {10},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2023},
     doi = {10.26493/1855-3974.2948.f25},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2948.f25/}
}
TY  - JOUR
AU  - Paul Terwilliger
TI  - Using a q-shuffle algebra to describe the basic module V(Λ_0) for the quantized enveloping algebra Uq(sl^2)
JO  - Ars Mathematica Contemporanea
PY  - 2023
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2948.f25/
DO  - 10.26493/1855-3974.2948.f25
LA  - en
ID  - 10_26493_1855_3974_2948_f25
ER  - 
%0 Journal Article
%A Paul Terwilliger
%T Using a q-shuffle algebra to describe the basic module V(Λ_0) for the quantized enveloping algebra Uq(sl^2)
%J Ars Mathematica Contemporanea
%D 2023
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2948.f25/
%R 10.26493/1855-3974.2948.f25
%G en
%F 10_26493_1855_3974_2948_f25
Paul Terwilliger. Using a q-shuffle algebra to describe the basic module V(Λ_0) for the quantized enveloping algebra Uq(sl^2). Ars Mathematica Contemporanea, Tome 23 (2023) no. 4, article  no. 10, 34 p. doi : 10.26493/1855-3974.2948.f25. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2948.f25/

Cité par Sources :