On girth-biregular graphs
Ars Mathematica Contemporanea, Tome 23 (2023) no. 4, article no. 01, 22 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let Γ denote a finite, connected, simple graph. For an edge e of Γ let n(e) denote the number of girth cycles containing e. For a vertex v of Γ let {e1, e2, …, ek} be the set of edges incident to v ordered such that n(e1) ≤ n(e2) ≤ … ≤ n(ek). Then (n(e1),n(e2),…,n(ek)) is called the signature of v. The graph Γ is said to be girth-biregular if it is bipartite, and all of its vertices belonging to the same bipartition have the same signature. Let Γ be a girth-biregular graph with girth g = 2d and signatures (a1,a2,…,ak1) and (b1,b2,…,bk2), and assume without loss of generality that k1 ≥ k2. Our first result is that {a1, a2, …, ak1} = {b1, b2, …, bk2}. Our next result is the upper bound ak1 ≤ M, where M = (k1−1)⌊g/4⌋(k2−1)⌈g/4⌉. We describe the graphs attaining equality. For d = 3 or d ≥ 4 even they are incidence graphs of Steiner systems and generalized polygons, respectively. Finally, we show that when d is even and ak1 = M − ε for some non-negative integer ε  k2 − 1, then ε = 0. Similar result is valid for d = 3, ε ≤ 1 and k2|̸ k1.
DOI : 10.26493/1855-3974.2935.a7b
Keywords: Girth cycle, girth-biregular graph, Steiner system, generalized polygons
@article{10_26493_1855_3974_2935_a7b,
     author = {Gyorgy Kiss and \v{S}tefko Miklavi\v{c} and Tam\'as Sz\H{o}nyi},
     title = {On girth-biregular graphs},
     journal = {Ars Mathematica Contemporanea},
     eid = {01},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2023},
     doi = {10.26493/1855-3974.2935.a7b},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2935.a7b/}
}
TY  - JOUR
AU  - Gyorgy Kiss
AU  - Štefko Miklavič
AU  - Tamás Szőnyi
TI  - On girth-biregular graphs
JO  - Ars Mathematica Contemporanea
PY  - 2023
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2935.a7b/
DO  - 10.26493/1855-3974.2935.a7b
LA  - en
ID  - 10_26493_1855_3974_2935_a7b
ER  - 
%0 Journal Article
%A Gyorgy Kiss
%A Štefko Miklavič
%A Tamás Szőnyi
%T On girth-biregular graphs
%J Ars Mathematica Contemporanea
%D 2023
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2935.a7b/
%R 10.26493/1855-3974.2935.a7b
%G en
%F 10_26493_1855_3974_2935_a7b
Gyorgy Kiss; Štefko Miklavič; Tamás Szőnyi. On girth-biregular graphs. Ars Mathematica Contemporanea, Tome 23 (2023) no. 4, article  no. 01, 22 p. doi : 10.26493/1855-3974.2935.a7b. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2935.a7b/

Cité par Sources :