Johnson graphs are Hamilton-connected
Ars Mathematica Contemporanea, Tome 6 (2013) no. 1, pp. 21-23.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We prove that the Johnson graphs are Hamilton-connected and apply this to obtain that another family of graphs is Hamilton-connected.
DOI : 10.26493/1855-3974.291.574
Keywords: Hamilton path, Johnson graph, Hamilton-connected.
@article{10_26493_1855_3974_291_574,
     author = {Brian Alspach},
     title = {Johnson graphs are {Hamilton-connected}},
     journal = {Ars Mathematica Contemporanea},
     pages = {21--23},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     doi = {10.26493/1855-3974.291.574},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.291.574/}
}
TY  - JOUR
AU  - Brian Alspach
TI  - Johnson graphs are Hamilton-connected
JO  - Ars Mathematica Contemporanea
PY  - 2013
SP  - 21
EP  - 23
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.291.574/
DO  - 10.26493/1855-3974.291.574
LA  - en
ID  - 10_26493_1855_3974_291_574
ER  - 
%0 Journal Article
%A Brian Alspach
%T Johnson graphs are Hamilton-connected
%J Ars Mathematica Contemporanea
%D 2013
%P 21-23
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.291.574/
%R 10.26493/1855-3974.291.574
%G en
%F 10_26493_1855_3974_291_574
Brian Alspach. Johnson graphs are Hamilton-connected. Ars Mathematica Contemporanea, Tome 6 (2013) no. 1, pp. 21-23. doi : 10.26493/1855-3974.291.574. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.291.574/

Cité par Sources :