A classification of connected cubic vertex-transitive bi-Cayley graphs over semidihedral group
Ars Mathematica Contemporanea, Tome 23 (2023) no. 4, article no. 04, 13 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A graph is said to be a bi-Cayley graph over a group H if there exists a subgroup of Aut(G) isomorphic to H acting semiregularly on its vertex set with two orbits. In this paper, we give a complete classification of connected cubic vertex-transitive bi-Cayley graphs over semidihedral group. As a byproduct, we construct a family of vertex-transitive non-Cayley graphs.
DOI : 10.26493/1855-3974.2905.c94
Keywords: Semidihedral group, bi-Cayley graph, vertex-transitive
@article{10_26493_1855_3974_2905_c94,
     author = {Jianji Cao and Young Soo Kwon and Mimi Zhang},
     title = {A classification of connected cubic vertex-transitive {bi-Cayley} graphs over semidihedral group},
     journal = {Ars Mathematica Contemporanea},
     eid = {04},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2023},
     doi = {10.26493/1855-3974.2905.c94},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2905.c94/}
}
TY  - JOUR
AU  - Jianji Cao
AU  - Young Soo Kwon
AU  - Mimi Zhang
TI  - A classification of connected cubic vertex-transitive bi-Cayley graphs over semidihedral group
JO  - Ars Mathematica Contemporanea
PY  - 2023
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2905.c94/
DO  - 10.26493/1855-3974.2905.c94
LA  - en
ID  - 10_26493_1855_3974_2905_c94
ER  - 
%0 Journal Article
%A Jianji Cao
%A Young Soo Kwon
%A Mimi Zhang
%T A classification of connected cubic vertex-transitive bi-Cayley graphs over semidihedral group
%J Ars Mathematica Contemporanea
%D 2023
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2905.c94/
%R 10.26493/1855-3974.2905.c94
%G en
%F 10_26493_1855_3974_2905_c94
Jianji Cao; Young Soo Kwon; Mimi Zhang. A classification of connected cubic vertex-transitive bi-Cayley graphs over semidihedral group. Ars Mathematica Contemporanea, Tome 23 (2023) no. 4, article  no. 04, 13 p. doi : 10.26493/1855-3974.2905.c94. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2905.c94/

Cité par Sources :