A non-associative incidence near-ring with a generalized Möbius function
Ars Mathematica Contemporanea, Tome 24 (2024) no. 2, article no. 03, 24 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

There is a convolution product on 3-variable partial flag functions of a locally finite poset that produces a generalized Möbius function. Under the product this generalized Möbius function is a one sided inverse of the zeta function and satisfies many generalizations of classical results. In particular we prove analogues of Phillip Hall’s Theorem on the Möbius function as an alternating sum of chain counts, Weisner’s Theorem, and Rota’s Crosscut Theorem. A key ingredient to these results is that this function is an overlapping product of classical Möbius functions. Using this generalized Möbius function we define analogues of the characteristic polynomial and Möbius polynomials for ranked lattices. We compute these polynomials for certain families of matroids and prove that this generalized Möbius polynomial has  − 1 as root if the matroid is modular. Using results from Ardila and Sanchez we prove that this generalized characteristic polynomial is a matroid valuation.
DOI : 10.26493/1855-3974.2894.b07
Keywords: Incidence algebra, matroid, Möbius function, valuation
@article{10_26493_1855_3974_2894_b07,
     author = {John Johnson and Max Wakefield},
     title = {A non-associative incidence near-ring with a generalized {M\"obius} function},
     journal = {Ars Mathematica Contemporanea},
     eid = {03},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2024},
     doi = {10.26493/1855-3974.2894.b07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2894.b07/}
}
TY  - JOUR
AU  - John Johnson
AU  - Max Wakefield
TI  - A non-associative incidence near-ring with a generalized Möbius function
JO  - Ars Mathematica Contemporanea
PY  - 2024
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2894.b07/
DO  - 10.26493/1855-3974.2894.b07
LA  - en
ID  - 10_26493_1855_3974_2894_b07
ER  - 
%0 Journal Article
%A John Johnson
%A Max Wakefield
%T A non-associative incidence near-ring with a generalized Möbius function
%J Ars Mathematica Contemporanea
%D 2024
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2894.b07/
%R 10.26493/1855-3974.2894.b07
%G en
%F 10_26493_1855_3974_2894_b07
John Johnson; Max Wakefield. A non-associative incidence near-ring with a generalized Möbius function. Ars Mathematica Contemporanea, Tome 24 (2024) no. 2, article  no. 03, 24 p. doi : 10.26493/1855-3974.2894.b07. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2894.b07/

Cité par Sources :