Polytopes associated to dihedral groups
Ars Mathematica Contemporanea, Tome 7 (2014) no. 1, pp. 30-38.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

In this note we investigate the convex hull of those n × n permutation matrices that correspond to symmetries of a regular n-gon. We give the complete facet description. As an application, we show that this yields a Gorenstein polytope, and we determine the Ehrhart h * -vector.
DOI : 10.26493/1855-3974.289.91d
Keywords: Permutation polytopes, dihedral groups, lattice polytopes
@article{10_26493_1855_3974_289_91d,
     author = {Barbara Baumeister and Christian Haase and Benjamin Nill and Andreas Paffenholz},
     title = {Polytopes associated to dihedral groups},
     journal = {Ars Mathematica Contemporanea},
     pages = {30--38},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     doi = {10.26493/1855-3974.289.91d},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.289.91d/}
}
TY  - JOUR
AU  - Barbara Baumeister
AU  - Christian Haase
AU  - Benjamin Nill
AU  - Andreas Paffenholz
TI  - Polytopes associated to dihedral groups
JO  - Ars Mathematica Contemporanea
PY  - 2014
SP  - 30
EP  - 38
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.289.91d/
DO  - 10.26493/1855-3974.289.91d
LA  - en
ID  - 10_26493_1855_3974_289_91d
ER  - 
%0 Journal Article
%A Barbara Baumeister
%A Christian Haase
%A Benjamin Nill
%A Andreas Paffenholz
%T Polytopes associated to dihedral groups
%J Ars Mathematica Contemporanea
%D 2014
%P 30-38
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.289.91d/
%R 10.26493/1855-3974.289.91d
%G en
%F 10_26493_1855_3974_289_91d
Barbara Baumeister; Christian Haase; Benjamin Nill; Andreas Paffenholz. Polytopes associated to dihedral groups. Ars Mathematica Contemporanea, Tome 7 (2014) no. 1, pp. 30-38. doi : 10.26493/1855-3974.289.91d. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.289.91d/

Cité par Sources :