Petersen-colorings and some families of snarks
Ars Mathematica Contemporanea, Tome 7 (2014) no. 1, pp. 161-173.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

In this paper we study Petersen-colorings and strong Petersen-colorings on some well known families of snarks, e.g. Blanuša snarks, Goldberg snarks and flower snarks. In particular, it is shown that flower snarks have a Petersen-coloring but they do not have a strong Petersen-coloring. Furthermore it is proved that possible minimum counterexamples to Jaeger’s Petersen-coloring conjecture do not contain a specific subdivision of K3, 3.
DOI : 10.26493/1855-3974.288.11a
Keywords: Petersen colorings, strong Petersen colorings, snarks
@article{10_26493_1855_3974_288_11a,
     author = {Jonas H\"agglund and Eckhard Steffen},
     title = {Petersen-colorings and some families of snarks},
     journal = {Ars Mathematica Contemporanea},
     pages = {161--173},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2014},
     doi = {10.26493/1855-3974.288.11a},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.288.11a/}
}
TY  - JOUR
AU  - Jonas Hägglund
AU  - Eckhard Steffen
TI  - Petersen-colorings and some families of snarks
JO  - Ars Mathematica Contemporanea
PY  - 2014
SP  - 161
EP  - 173
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.288.11a/
DO  - 10.26493/1855-3974.288.11a
LA  - en
ID  - 10_26493_1855_3974_288_11a
ER  - 
%0 Journal Article
%A Jonas Hägglund
%A Eckhard Steffen
%T Petersen-colorings and some families of snarks
%J Ars Mathematica Contemporanea
%D 2014
%P 161-173
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.288.11a/
%R 10.26493/1855-3974.288.11a
%G en
%F 10_26493_1855_3974_288_11a
Jonas Hägglund; Eckhard Steffen. Petersen-colorings and some families of snarks. Ars Mathematica Contemporanea, Tome 7 (2014) no. 1, pp. 161-173. doi : 10.26493/1855-3974.288.11a. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.288.11a/

Cité par Sources :