A note on domination and independence-domination numbers of graphs
Ars Mathematica Contemporanea, Tome 6 (2013) no. 1, pp. 89-97.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Vizing's conjecture is true for graphs G satisfying γi(G) = γ(G), where γ(G) is the domination number of a graph G and γi(G) is the independence-domination number of G, that is, the maximum, over all independent sets I in G, of the minimum number of vertices needed to dominate I. The equality γi(G) = γ(G) is known to hold for all chordal graphs and for chordless cycles of length 0 (mod 3). We prove some results related to graphs for which the above equality holds. More specifically, we show that the problems of determining whether γi(G) = γ(G) = 2 and of verifying whether γi(G) ≥ 2 are NP-complete, even if G is weakly chordal. We also initiate the study of the equality γi = γ in the context of hereditary graph classes and exhibit two infinite families of graphs for which γi γ.
DOI : 10.26493/1855-3974.282.71c
Keywords: Vizing's conjecture, domination number, independence-domination number, weakly chordal graph, NP-completeness, hereditary graph class, IDD-perfect graph.
@article{10_26493_1855_3974_282_71c,
     author = {Martin Milani\v{c}},
     title = {A note on domination and independence-domination numbers of graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {89--97},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2013},
     doi = {10.26493/1855-3974.282.71c},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.282.71c/}
}
TY  - JOUR
AU  - Martin Milanič
TI  - A note on domination and independence-domination numbers of graphs
JO  - Ars Mathematica Contemporanea
PY  - 2013
SP  - 89
EP  - 97
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.282.71c/
DO  - 10.26493/1855-3974.282.71c
LA  - en
ID  - 10_26493_1855_3974_282_71c
ER  - 
%0 Journal Article
%A Martin Milanič
%T A note on domination and independence-domination numbers of graphs
%J Ars Mathematica Contemporanea
%D 2013
%P 89-97
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.282.71c/
%R 10.26493/1855-3974.282.71c
%G en
%F 10_26493_1855_3974_282_71c
Martin Milanič. A note on domination and independence-domination numbers of graphs. Ars Mathematica Contemporanea, Tome 6 (2013) no. 1, pp. 89-97. doi : 10.26493/1855-3974.282.71c. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.282.71c/

Cité par Sources :