Cayley graphs on nilpotent groups with cyclic commutator subgroup are hamiltonian
Ars mathematica contemporanea, Tome 7 (2014) no. 1, pp. 55-72
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
We show that if G is any nilpotent, finite group, and the commutator subgroup of G is cyclic, then every connected Cayley graph on G has a hamiltonian cycle.
Keywords:
Cayley graph, hamiltonian cycle, nilpotent group, commutator subgroup
@article{10_26493_1855_3974_280_8d3,
author = {Ebrahim Ghaderpour and Dave Witte Morris},
title = {
{Cayley} graphs on nilpotent groups with cyclic commutator subgroup are hamiltonian
},
journal = {Ars mathematica contemporanea},
pages = {55--72},
year = {2014},
volume = {7},
number = {1},
doi = {10.26493/1855-3974.280.8d3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.280.8d3/}
}
TY - JOUR AU - Ebrahim Ghaderpour AU - Dave Witte Morris TI - Cayley graphs on nilpotent groups with cyclic commutator subgroup are hamiltonian JO - Ars mathematica contemporanea PY - 2014 SP - 55 EP - 72 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.280.8d3/ DO - 10.26493/1855-3974.280.8d3 LA - en ID - 10_26493_1855_3974_280_8d3 ER -
%0 Journal Article %A Ebrahim Ghaderpour %A Dave Witte Morris %T Cayley graphs on nilpotent groups with cyclic commutator subgroup are hamiltonian %J Ars mathematica contemporanea %D 2014 %P 55-72 %V 7 %N 1 %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.280.8d3/ %R 10.26493/1855-3974.280.8d3 %G en %F 10_26493_1855_3974_280_8d3
Ebrahim Ghaderpour; Dave Witte Morris. Cayley graphs on nilpotent groups with cyclic commutator subgroup are hamiltonian. Ars mathematica contemporanea, Tome 7 (2014) no. 1, pp. 55-72. doi: 10.26493/1855-3974.280.8d3
Cité par Sources :