Cayley graphs on nilpotent groups with cyclic commutator subgroup are hamiltonian
Ars mathematica contemporanea, Tome 7 (2014) no. 1, pp. 55-72 Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website

Voir la notice de l'article

We show that if G is any nilpotent, finite group, and the commutator subgroup of G is cyclic, then every connected Cayley graph on G has a hamiltonian cycle.
DOI : 10.26493/1855-3974.280.8d3
Keywords: Cayley graph, hamiltonian cycle, nilpotent group, commutator subgroup
@article{10_26493_1855_3974_280_8d3,
     author = {Ebrahim Ghaderpour and Dave Witte Morris},
     title = {
		{Cayley} graphs on nilpotent groups with cyclic commutator subgroup are hamiltonian
	},
     journal = {Ars mathematica contemporanea},
     pages = {55--72},
     year = {2014},
     volume = {7},
     number = {1},
     doi = {10.26493/1855-3974.280.8d3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.280.8d3/}
}
TY  - JOUR
AU  - Ebrahim Ghaderpour
AU  - Dave Witte Morris
TI  - Cayley graphs on nilpotent groups with cyclic commutator subgroup are hamiltonian
	
JO  - Ars mathematica contemporanea
PY  - 2014
SP  - 55
EP  - 72
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.280.8d3/
DO  - 10.26493/1855-3974.280.8d3
LA  - en
ID  - 10_26493_1855_3974_280_8d3
ER  - 
%0 Journal Article
%A Ebrahim Ghaderpour
%A Dave Witte Morris
%T Cayley graphs on nilpotent groups with cyclic commutator subgroup are hamiltonian
	
%J Ars mathematica contemporanea
%D 2014
%P 55-72
%V 7
%N 1
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.280.8d3/
%R 10.26493/1855-3974.280.8d3
%G en
%F 10_26493_1855_3974_280_8d3
Ebrahim Ghaderpour; Dave Witte Morris. Cayley graphs on nilpotent groups with cyclic commutator subgroup are hamiltonian. Ars mathematica contemporanea, Tome 7 (2014) no. 1, pp. 55-72. doi: 10.26493/1855-3974.280.8d3

Cité par Sources :