On geometric trilateral-free (n_3) configurations
Ars Mathematica Contemporanea, Tome 6 (2013) no. 2, pp. 253-259.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

This note presents the first known examples of a geometric trilateral-free (233) configuration and a geometric trilateral-free (273) configuration. The (273) configuration is also pentalateral-free.
DOI : 10.26493/1855-3974.273.c0f
Keywords: Configurations, trilaterals
@article{10_26493_1855_3974_273_c0f,
     author = {Michael W. Raney},
     title = {On geometric trilateral-free (n_3) configurations},
     journal = {Ars Mathematica Contemporanea},
     pages = {253--259},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2013},
     doi = {10.26493/1855-3974.273.c0f},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.273.c0f/}
}
TY  - JOUR
AU  - Michael W. Raney
TI  - On geometric trilateral-free (n_3) configurations
JO  - Ars Mathematica Contemporanea
PY  - 2013
SP  - 253
EP  - 259
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.273.c0f/
DO  - 10.26493/1855-3974.273.c0f
LA  - en
ID  - 10_26493_1855_3974_273_c0f
ER  - 
%0 Journal Article
%A Michael W. Raney
%T On geometric trilateral-free (n_3) configurations
%J Ars Mathematica Contemporanea
%D 2013
%P 253-259
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.273.c0f/
%R 10.26493/1855-3974.273.c0f
%G en
%F 10_26493_1855_3974_273_c0f
Michael W. Raney. On geometric trilateral-free (n_3) configurations. Ars Mathematica Contemporanea, Tome 6 (2013) no. 2, pp. 253-259. doi : 10.26493/1855-3974.273.c0f. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.273.c0f/

Cité par Sources :