An extension of the Erdős-Ko-Rado theorem to uniform set partitions
Ars Mathematica Contemporanea, Tome 23 (2023) no. 4, article no. 02, 21 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A (k,ℓ)-partition is a set partition which has ℓ blocks each of size k. Two uniform set partitions P and Q are said to be partially t-intersecting if there exist blocks Pi in P and Qj in Q such that |Pi∩Qj| ≥ t. In this paper we prove a version of the Erdős-Ko-Rado theorem for partially 2-intersecting (k,ℓ)-partitions. In particular, we show for ℓ sufficiently large, the set of all (k,ℓ)-partitions in which a block contains a fixed pair is the largest set of 2-partially intersecting (k,ℓ)-partitions. For for k = 3, we show this result holds for all ℓ.
DOI : 10.26493/1855-3974.2698.6fe
Keywords: Erdos-Ko-Rado Theorem, Uniform set partitions, Ratio bound, Cliques, Cocliques, Quotient graphs
@article{10_26493_1855_3974_2698_6fe,
     author = {Karen Meagher and Mahsa N. Shirazi and Brett Stevens},
     title = {An extension of the {Erd\H{o}s-Ko-Rado} theorem to uniform set partitions},
     journal = {Ars Mathematica Contemporanea},
     eid = {02},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2023},
     doi = {10.26493/1855-3974.2698.6fe},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2698.6fe/}
}
TY  - JOUR
AU  - Karen Meagher
AU  - Mahsa N. Shirazi
AU  - Brett Stevens
TI  - An extension of the Erdős-Ko-Rado theorem to uniform set partitions
JO  - Ars Mathematica Contemporanea
PY  - 2023
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2698.6fe/
DO  - 10.26493/1855-3974.2698.6fe
LA  - en
ID  - 10_26493_1855_3974_2698_6fe
ER  - 
%0 Journal Article
%A Karen Meagher
%A Mahsa N. Shirazi
%A Brett Stevens
%T An extension of the Erdős-Ko-Rado theorem to uniform set partitions
%J Ars Mathematica Contemporanea
%D 2023
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2698.6fe/
%R 10.26493/1855-3974.2698.6fe
%G en
%F 10_26493_1855_3974_2698_6fe
Karen Meagher; Mahsa N. Shirazi; Brett Stevens. An extension of the Erdős-Ko-Rado theorem to uniform set partitions. Ars Mathematica Contemporanea, Tome 23 (2023) no. 4, article  no. 02, 21 p. doi : 10.26493/1855-3974.2698.6fe. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2698.6fe/

Cité par Sources :