On the Aα-spectral radius of connected graphs
Ars Mathematica Contemporanea, Tome 23 (2023) no. 1, article no. 06, 23 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

For a simple graph G, the generalized adjacency matrix Aα(G) is defined as Aα(G) = αD(G) + (1−α)A(G), α ∈ [0,1], where A(G) is the adjacency matrix and D(G) is the diagonal matrix of the vertex degrees. It is clear that A0(G) = A(G) and 2A1/2(G) = Q(G) implying that the matrix Aα(G) is a generalization of the adjacency matrix and the signless Laplacian matrix. In this paper, we obtain some new upper and lower bounds for the generalized adjacency spectral radius λ(Aα(G)), in terms of vertex degrees, average vertex 2-degrees, the order, the size, etc. The extremal graphs attaining these bounds are characterized. We will show that our bounds are better than some of the already known bounds for some classes of graphs. We derive a general upper bound for λ(Aα(G)), in terms of vertex degrees and positive real numbers bi. As application, we obtain some new upper bounds for λ(Aα(G)). Further, we obtain some relations between clique number ω(G), independence number γ(G) and the generalized adjacency eigenvalues of a graph G.
DOI : 10.26493/1855-3974.2697.43a
Keywords: Adjacency matrix, signless Laplacian matrix, generalized adjacency matrix, spectral radius, degree sequence, clique number, independence number
@article{10_26493_1855_3974_2697_43a,
     author = {Abdollah Alhevaz and Maryam Baghipur and Hilal Ahmad Ganie and Kinkar Chandra Das},
     title = {On the {A\ensuremath{\alpha}-spectral} radius of connected graphs},
     journal = {Ars Mathematica Contemporanea},
     eid = {06},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2023},
     doi = {10.26493/1855-3974.2697.43a},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2697.43a/}
}
TY  - JOUR
AU  - Abdollah Alhevaz
AU  - Maryam Baghipur
AU  - Hilal Ahmad Ganie
AU  - Kinkar Chandra Das
TI  - On the Aα-spectral radius of connected graphs
JO  - Ars Mathematica Contemporanea
PY  - 2023
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2697.43a/
DO  - 10.26493/1855-3974.2697.43a
LA  - en
ID  - 10_26493_1855_3974_2697_43a
ER  - 
%0 Journal Article
%A Abdollah Alhevaz
%A Maryam Baghipur
%A Hilal Ahmad Ganie
%A Kinkar Chandra Das
%T On the Aα-spectral radius of connected graphs
%J Ars Mathematica Contemporanea
%D 2023
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2697.43a/
%R 10.26493/1855-3974.2697.43a
%G en
%F 10_26493_1855_3974_2697_43a
Abdollah Alhevaz; Maryam Baghipur; Hilal Ahmad Ganie; Kinkar Chandra Das. On the Aα-spectral radius of connected graphs. Ars Mathematica Contemporanea, Tome 23 (2023) no. 1, article  no. 06, 23 p. doi : 10.26493/1855-3974.2697.43a. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2697.43a/

Cité par Sources :