Mutually orthogonal cycle systems
Ars Mathematica Contemporanea, Tome 23 (2023) no. 2, article no. 05, 20 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

An ℓ-cycle system ℱ of a graph Γ is a set of ℓ-cycles which partition the edge set of Γ. Two such cycle systems ℱ and ℱ′ are said to be orthogonal if no two distinct cycles from ℱ ∪ ℱ′ share more than one edge. Orthogonal cycle systems naturally arise from face 2-colourable polyehdra and in higher genus from Heffter arrays with certain orderings. A set of pairwise orthogonal ℓ-cycle systems of Γ is said to be a set of mutually orthogonal cycle systems of Γ.Let μ(ℓ,n) (respectively, μ′(ℓ,n)) be the maximum integer μ such that there exists a set of μ mutually orthogonal (cyclic) ℓ-cycle systems of the complete graph Kn. We show that if ℓ ≥ 4 is even and n ≡ 1 (mod  2ℓ), then μ′(ℓ,n), and hence μ(ℓ,n), is bounded below by a constant multiple of n/ℓ2. In contrast, we obtain the following upper bounds: μ(ℓ,n) ≤ n − 2; μ(ℓ,n) ≤ (n−2)(n−3)/(2(ℓ−3)) when ℓ ≥ 4; μ(ℓ,n) ≤ 1 when ℓ > n/√2; and μ′(ℓ,n) ≤ n − 3 when n ≥ 4. We also obtain computational results for small values of n and ℓ.
DOI : 10.26493/1855-3974.2692.86d
Keywords: Orthogonal cycle decompositions, cyclic cycle systems, Heffter arrays, completely-reducible, super-simple
@article{10_26493_1855_3974_2692_86d,
     author = {Andrea C. Burgess and Nicholas J. Cavenagh and David A. Pike},
     title = {Mutually orthogonal cycle systems},
     journal = {Ars Mathematica Contemporanea},
     eid = {05},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2023},
     doi = {10.26493/1855-3974.2692.86d},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2692.86d/}
}
TY  - JOUR
AU  - Andrea C. Burgess
AU  - Nicholas J. Cavenagh
AU  - David A. Pike
TI  - Mutually orthogonal cycle systems
JO  - Ars Mathematica Contemporanea
PY  - 2023
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2692.86d/
DO  - 10.26493/1855-3974.2692.86d
LA  - en
ID  - 10_26493_1855_3974_2692_86d
ER  - 
%0 Journal Article
%A Andrea C. Burgess
%A Nicholas J. Cavenagh
%A David A. Pike
%T Mutually orthogonal cycle systems
%J Ars Mathematica Contemporanea
%D 2023
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2692.86d/
%R 10.26493/1855-3974.2692.86d
%G en
%F 10_26493_1855_3974_2692_86d
Andrea C. Burgess; Nicholas J. Cavenagh; David A. Pike. Mutually orthogonal cycle systems. Ars Mathematica Contemporanea, Tome 23 (2023) no. 2, article  no. 05, 20 p. doi : 10.26493/1855-3974.2692.86d. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2692.86d/

Cité par Sources :