Growable realizations: a powerful approach to the Buratti-Horak-Rosa Conjecture
Ars Mathematica Contemporanea, Tome 22 (2022) no. 4, article no. 04, 28 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Label the vertices of the complete graph Kv with the integers {0, 1, …, v − 1} and define the length of the edge between the vertices x and y to be min (|x − y|,v − |x − y|). Let L be a multiset of size v − 1 with underlying set contained in {1, …, ⌊v/2⌋}. The Buratti-Horak-Rosa Conjecture is that there is a Hamiltonian path in Kv whose edge lengths are exactly L if and only if for any divisor d of v the number of multiples of d appearing in L is at most v − d.We introduce “growable realizations,” which enable us to prove many new instances of the conjecture and to reprove known results in a simpler way. As examples of the new method, we give a complete solution when the underlying set is contained in {1, 4, 5} or in {1, 2, 3, 4} and a partial result when the underlying set has the form {1, x, 2x}. We believe that for any set U of positive integers there is a finite set of growable realizations that implies the truth of the Buratti-Horak-Rosa Conjecture for all but finitely many multisets with underlying set U.
DOI : 10.26493/1855-3974.2659.be1
Keywords: Hamiltonian path, complete graph, edge-length, growable realization
@article{10_26493_1855_3974_2659_be1,
     author = {M. A. Ollis and Anita Pasotti and Marco A. Pellegrini and John R. Schmitt},
     title = {Growable realizations: a powerful approach to the {Buratti-Horak-Rosa} {Conjecture}},
     journal = {Ars Mathematica Contemporanea},
     eid = {04},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2022},
     doi = {10.26493/1855-3974.2659.be1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2659.be1/}
}
TY  - JOUR
AU  - M. A. Ollis
AU  - Anita Pasotti
AU  - Marco A. Pellegrini
AU  - John R. Schmitt
TI  - Growable realizations: a powerful approach to the Buratti-Horak-Rosa Conjecture
JO  - Ars Mathematica Contemporanea
PY  - 2022
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2659.be1/
DO  - 10.26493/1855-3974.2659.be1
LA  - en
ID  - 10_26493_1855_3974_2659_be1
ER  - 
%0 Journal Article
%A M. A. Ollis
%A Anita Pasotti
%A Marco A. Pellegrini
%A John R. Schmitt
%T Growable realizations: a powerful approach to the Buratti-Horak-Rosa Conjecture
%J Ars Mathematica Contemporanea
%D 2022
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2659.be1/
%R 10.26493/1855-3974.2659.be1
%G en
%F 10_26493_1855_3974_2659_be1
M. A. Ollis; Anita Pasotti; Marco A. Pellegrini; John R. Schmitt. Growable realizations: a powerful approach to the Buratti-Horak-Rosa Conjecture. Ars Mathematica Contemporanea, Tome 22 (2022) no. 4, article  no. 04, 28 p. doi : 10.26493/1855-3974.2659.be1. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2659.be1/

Cité par Sources :