Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website
@article{10_26493_1855_3974_2659_be1, author = {M. A. Ollis and Anita Pasotti and Marco A. Pellegrini and John R. Schmitt}, title = {Growable realizations: a powerful approach to the {Buratti-Horak-Rosa} {Conjecture}}, journal = {Ars Mathematica Contemporanea}, eid = {04}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2022}, doi = {10.26493/1855-3974.2659.be1}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2659.be1/} }
TY - JOUR AU - M. A. Ollis AU - Anita Pasotti AU - Marco A. Pellegrini AU - John R. Schmitt TI - Growable realizations: a powerful approach to the Buratti-Horak-Rosa Conjecture JO - Ars Mathematica Contemporanea PY - 2022 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2659.be1/ DO - 10.26493/1855-3974.2659.be1 LA - en ID - 10_26493_1855_3974_2659_be1 ER -
%0 Journal Article %A M. A. Ollis %A Anita Pasotti %A Marco A. Pellegrini %A John R. Schmitt %T Growable realizations: a powerful approach to the Buratti-Horak-Rosa Conjecture %J Ars Mathematica Contemporanea %D 2022 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2659.be1/ %R 10.26493/1855-3974.2659.be1 %G en %F 10_26493_1855_3974_2659_be1
M. A. Ollis; Anita Pasotti; Marco A. Pellegrini; John R. Schmitt. Growable realizations: a powerful approach to the Buratti-Horak-Rosa Conjecture. Ars Mathematica Contemporanea, Tome 22 (2022) no. 4, article no. 04, 28 p. doi : 10.26493/1855-3974.2659.be1. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2659.be1/
Cité par Sources :