Cell reducing and the dimension of the C^1 bivariate spline space
Ars Mathematica Contemporanea, Tome 22 (2022) no. 3, article no. 06, 18 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

In this paper, the problem of determining the dimension of the space Sn1(△), n ≥ 3 of bivariate C1 splines of degree ≤ n over a triangulation △ is considered. The piecewise polynomials are represented as blossoms, and the smoothness conditions are written as a system of linear equations. The rank of the system matrix is analysed by repeatedly reducing small subtriangulations (cells) at the boundary of a triangulation. It is shown that the dimension of the bivariate spline space Sn1(△), n ≥ 3 is equal to Schumaker’s lower bound for a large class of triangulations.
DOI : 10.26493/1855-3974.2646.c07
Keywords: Dimension, spline space, triangulation, cell
@article{10_26493_1855_3974_2646_c07,
     author = {Ga\v{s}per Jakli\v{c}},
     title = {Cell reducing and the dimension of the {C^1} bivariate spline space},
     journal = {Ars Mathematica Contemporanea},
     eid = {06},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2022},
     doi = {10.26493/1855-3974.2646.c07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2646.c07/}
}
TY  - JOUR
AU  - Gašper Jaklič
TI  - Cell reducing and the dimension of the C^1 bivariate spline space
JO  - Ars Mathematica Contemporanea
PY  - 2022
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2646.c07/
DO  - 10.26493/1855-3974.2646.c07
LA  - en
ID  - 10_26493_1855_3974_2646_c07
ER  - 
%0 Journal Article
%A Gašper Jaklič
%T Cell reducing and the dimension of the C^1 bivariate spline space
%J Ars Mathematica Contemporanea
%D 2022
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2646.c07/
%R 10.26493/1855-3974.2646.c07
%G en
%F 10_26493_1855_3974_2646_c07
Gašper Jaklič. Cell reducing and the dimension of the C^1 bivariate spline space. Ars Mathematica Contemporanea, Tome 22 (2022) no. 3, article  no. 06, 18 p. doi : 10.26493/1855-3974.2646.c07. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2646.c07/

Cité par Sources :